Examples 9

Integration Applications, Improper Integrals, Polar Coordinates and Complex Numbers

November 28, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

[^0]
1 Integration Applications

- Calculate the length of curves
- Solve separable differential equations (with and without initial conditions)

Example 1.1-Arc length

Calculate the length of the astroid given by

$$
\begin{equation*}
x^{\frac{2}{3}}+y^{\frac{2}{3}}=1 \tag{1.1}
\end{equation*}
$$

Recall that the arc-length of $y=f(x)$ over the interval $[a, b]$ is given by

$$
\begin{equation*}
s=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x \tag{1.2}
\end{equation*}
$$

- The curve is symmetrical in transformations $x \rightarrow-x$ and $y \rightarrow-y$, therefore we can calculate the length in one quadrant and quadruple it.
- In the quadrant $\{(x, y): x>0, y>0\}$, we have

$$
\begin{equation*}
y=\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}} \tag{1.3}
\end{equation*}
$$

upon rearranging (1.1) and taking the positive root.

- Then

$$
\begin{align*}
\frac{d y}{d x} & =\frac{3}{2}\left(1-x^{\frac{2}{3}}\right)^{\frac{1}{2}}\left(-\frac{2}{3} x^{-\frac{1}{3}}\right) \tag{1.4}\\
& =-x^{-\frac{1}{3}}\left(1-x^{\frac{2}{3}}\right)^{\frac{1}{2}} \tag{1.5}
\end{align*}
$$

- The formula for arc length in this quadrant then gives

$$
\begin{align*}
s & =\int_{0}^{1} \sqrt{1+x^{-\frac{2}{3}}\left(1-x^{\frac{2}{3}}\right)} d x \tag{1.6}\\
& =\int_{0}^{1} x^{-\frac{1}{3}} d x \tag{1.7}\\
& =3 / 2 \tag{1.8}
\end{align*}
$$

- Therefore the total length of the astroid is 6 units.
- Note: If it is easier to write the curve as a function of y, i.e. $x=g(y)$ then use

$$
\begin{equation*}
s=\int_{y_{1}}^{y_{2}} \sqrt{1+g^{\prime}(y)^{2}} d y \tag{1.9}
\end{equation*}
$$

where $g^{\prime}(y)$ is $\frac{d g}{d y}$ and y_{1} and y_{2} are y -values at the end points of the curve.

Example 1.2-Separable differential equations

Solve the following differential equations
(a)

$$
\begin{equation*}
\frac{d y}{d x}=-x y \tag{1.10}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\frac{d T}{d t}=-k\left(T-30^{\circ}\right), \quad T(0)=100^{\circ} \tag{1.11}
\end{equation*}
$$

where k is a constant.
(a) - No initial condition given, therefore we expect a family of solutions.

- Separating the variables gives

$$
\begin{align*}
\int \frac{1}{y} d y & =-\int x d x \tag{1.12}\\
\Rightarrow \quad \ln y & =-\frac{1}{2} x^{2}+C \tag{1.13}\\
\Rightarrow \quad y & =A e^{-\frac{1}{2} x^{2}} \tag{1.14}
\end{align*}
$$

where we have introduced a new constant $A=e^{C}$.

- You can verify your solution by substituting it, and its derivative back into (1.10) and check that it is satisfied.
- Sketch of solutions for values of $A \in[-2,2]$.

(b) - This DE comes from Newton's Law of cooling: it represents the evolution of the temperature T of a body initially at 100°, in a room of 30° degrees.
- Separate the variables:

$$
\begin{align*}
\int \frac{1}{T-30} d T & =\int-k d t \tag{1.15}\\
\Rightarrow \quad \ln (T-30) & =-k t+C \tag{1.16}\\
\Rightarrow \quad T-30 & =A e^{-k t} \quad \text { where } A=e^{C} \tag{1.17}\\
\Rightarrow \quad T & =A e^{-k t}+30 \tag{1.18}
\end{align*}
$$

- Now use the initial condition to find C :

$$
\begin{align*}
T(0) & =A+30=100 \tag{1.19}\\
\Rightarrow \quad A & =70 \tag{1.20}
\end{align*}
$$

- And so the evolution of the body's temperature satisfies

$$
\begin{equation*}
T=70 e^{-k t}+30 \tag{1.21}
\end{equation*}
$$

- Note that $\lim _{t \rightarrow \infty} T(t)=30^{\circ}$ as one would expect physically.

2 Improper Integrals

- Determine whether integrals with discontinuities in the integrand converge
- Evaluate these improper integrals

Example 2.1

Determine whether the following integrals converge. if they do, find their value.
(a)

$$
\begin{equation*}
\int_{0}^{\infty} x e^{-x^{2}} d x \tag{2.1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{0}^{2} \frac{1}{\sqrt{2-x}} d x \tag{2.2}
\end{equation*}
$$

(a) - This is an improper integral due to the infinite upper boundary.

- We may write it as

$$
\begin{equation*}
I=\lim _{t \rightarrow \infty} \int_{0}^{t} x e^{-x^{2}} d x \tag{2.3}
\end{equation*}
$$

- We may integrate using the substitution

$$
\begin{equation*}
u=x^{2} \quad \Rightarrow \quad d u=2 x d x \tag{2.4}
\end{equation*}
$$

Then

$$
\begin{align*}
I & =\frac{1}{2} \lim _{t \rightarrow \infty} \int_{0}^{t^{2}} e^{-u} d u \tag{2.5}\\
& =\left.\frac{1}{2} \lim _{t \rightarrow \infty}\left(-e^{-u}\right)\right|_{0} ^{t^{2}} \tag{2.6}\\
& =\frac{1}{2} \lim _{t \rightarrow \infty}\left(1-e^{-t^{2}}\right) \tag{2.7}\\
& =\frac{1}{2} \tag{2.8}
\end{align*}
$$

(b) - This integral is improper since the integrand is not continuous at the upper boundary.

- Write it as

$$
\begin{align*}
I & =\lim _{t \rightarrow 2^{-}} \int_{0}^{t} \frac{1}{\sqrt{2-x}} d x \tag{2.9}\\
& =\left.\lim _{t \rightarrow 2^{-}}\left(-2(2-x)^{1 / 2}\right)\right|_{0} ^{t} \tag{2.10}\\
& =\lim _{t \rightarrow 2^{-}}(-2 \sqrt{2-t}+2 \sqrt{2}) \tag{2.11}\\
& =2 \sqrt{2} \tag{2.12}
\end{align*}
$$

3 Polar Coordinates

- Convert between cartesian and polar coordinates
- Sketch curves expressed in polar coordinates

Example 3.1

Convert the following curve into Cartesian coordinates

$$
\begin{equation*}
r^{2}=\frac{1}{\cos 2 \theta} \tag{3.1}
\end{equation*}
$$

Recall that the map between Cartesians and Polars may be expressed as

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{3.2}
\end{equation*}
$$

- Using the identity $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$ we have

$$
\begin{gather*}
r^{2}=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta} \tag{3.3}\\
\Rightarrow \quad r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=1 \tag{3.4}\\
\Rightarrow \quad x^{2}-y^{2}=1 \tag{3.5}
\end{gather*}
$$

which is the equation for a hyperbola.

- Note that the polar form is illuminating for a sketch - one can see straight away that there are asymptotes $\theta= \pm \pi / 4$.

4 Complex Numbers

- Operations on complex numbers (multiplication / division etc.)
- Polar form of complex numbers
- DeMoivre's Theorem
- Integration using complex numbers
- Complex roots

Example 4.1

Write the following complex numbers in standard form:
(a)

$$
\begin{equation*}
\frac{1+j}{1-j} \tag{4.1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
(1+\sqrt{3} j)^{3} \tag{4.2}
\end{equation*}
$$

(a) We may simplify quotients of complex numbers by multiplying through by the complex conjugate of the denominator:

$$
\begin{align*}
\frac{1+j}{1-j} & =\frac{(1+j)^{2}}{(1-j)(1+j)} \tag{4.3}\\
& =\frac{1+2 j+j^{2}}{2} \tag{4.4}\\
& =j \tag{4.5}
\end{align*}
$$

Alternatively we can use polar form (nice when multiplying and dividing complex numbers):

$$
\begin{equation*}
1+j=\sqrt{2} e^{\frac{\pi}{4} j}, \quad 1-j=\sqrt{2} e^{-\frac{\pi}{4} j} \tag{4.6}
\end{equation*}
$$

and so

$$
\begin{equation*}
\frac{1+j}{1-j}=\frac{\sqrt{2} e^{\frac{\pi}{4} j}}{\sqrt{2} e^{-\frac{\pi}{4} j}}=e^{\frac{\pi}{2} j}=j \tag{4.7}
\end{equation*}
$$

(b) Now that there's a lot of multiplication involved, we should definitely convert to polars:

$$
\begin{equation*}
r=\sqrt{1+3}=4, \quad \tan \theta=\sqrt{3} \quad \Rightarrow \quad \theta=\frac{\pi}{3} \quad(\theta \text { in 1st quadrant }) \tag{4.8}
\end{equation*}
$$

Then

$$
\begin{equation*}
1+\sqrt{3} j=2 e^{\frac{\pi}{3} j} \tag{4.9}
\end{equation*}
$$

and so

$$
\begin{align*}
(1+\sqrt{3} j)^{3} & =\left(2 e^{\frac{\pi}{3} j}\right)^{3} \quad \text { (De Moivre's Theorem) } \tag{4.10}\\
& =8 e^{\pi j} \tag{4.11}\\
& =-8 \tag{4.12}
\end{align*}
$$

This is clear geometrically in the complex plane recalling that upon multiplying complex numbers, the moduli get multiplied and the arguments get added:

Example 4.2

Use complex numbers to evaluate the following integral:

$$
\begin{equation*}
\int e^{2 x} \cos 3 x d x \tag{4.13}
\end{equation*}
$$

- Note that $\cos 3 x$ is the real part of $e^{3 j x}$ so

$$
\begin{equation*}
\int e^{2 x} \cos 3 x d x=\int e^{2 x} \Re\left(e^{3 j x}\right) d x=\Re\left(\int e^{(2+3 j) x} d x\right) \tag{4.14}
\end{equation*}
$$

- Evaluating the complex integral gives

$$
\begin{align*}
\int e^{(2+3 j) x} d x & =\frac{1}{2+3 j} e^{(2+3 j) x}+\bar{C} \tag{4.15}\\
& =\frac{2-3 j}{13} e^{2 x}(\cos 3 x+j \sin 3 x)+\bar{C} \tag{4.16}
\end{align*}
$$

where \bar{C} is a complex constant.

- Taking the real part gives us back our original integral:

$$
\begin{equation*}
\int e^{2 x} \cos 3 x d x=\frac{2}{13} e^{2 x} \cos 3 x+\frac{3}{13} e^{2 x} \sin 3 x+C \tag{4.17}
\end{equation*}
$$

where $C=\Re(\bar{C})$.

Example 4.3

Find all the fourth roots of -16

- Write in polar form:

$$
\begin{equation*}
r=16, \theta=\pi \quad \Rightarrow \quad-16=16 e^{\pi j} \tag{4.18}
\end{equation*}
$$

- However since the polar form is invariant to adding multiples of 2π to θ we may write

$$
\begin{equation*}
-16=16 e^{j \pi}=16 e^{j(\pi+2 k \pi)} \tag{4.19}
\end{equation*}
$$

for integer values of k.

- Taking the fourth root gives

$$
\begin{align*}
(-16)^{\frac{1}{4}} & =16^{\frac{1}{4}} e^{j\left(\frac{\pi}{4}+k \frac{\pi}{2}\right)} \tag{4.20}\\
& =2 e^{j\left(\frac{\pi}{4}+k \frac{\pi}{2}\right)} \tag{4.21}
\end{align*}
$$

- Now run through four consecutive values for k.

$$
\begin{array}{lll}
k=0 & \text { gives } & \omega_{0}=2 e^{\frac{\pi}{4} j}=\sqrt{2}(1+j) \\
k=1 & \text { gives } & \omega_{1}=2 e^{\frac{3 \pi}{4} j}=\sqrt{2}(-1+j) \\
k=2 & \text { gives } & \omega_{2}=2 e^{\frac{5 \pi}{4} j}=\sqrt{2}(-1-j) \\
k=3 & \text { gives } & \omega_{3}=2 e^{\frac{7 \pi}{4} j}=\sqrt{2}(1-j) \tag{4.25}
\end{array}
$$

[^0]: * Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

