Examples 9
Integration Applications, Improper Integrals, Polar Coordinates
and Complex Numbers

November 28, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.*

*Created by Thomas Bury - please send comments or corrections to tbury@uuwaterloo.ca
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1 Integration Applications

e Calculate the length of curves

e Solve separable differential equations (with and without initial conditions)

Example 1.1 - Arc length

Calculate the length of the astroid given by

wn
wln

3 +y3 =1 (1.1)

Recall that the arc-length of y = f(x) over the
interval [a, b] is given by

- The curve is symmetrical in transformations x — —z and y — —y, therefore we can calculate
the length in one quadrant and quadruple it.

- In the quadrant {(z,y) : x > 0,y > 0}, we have

3

y = (1_35%)5 (1.3)
upon rearranging (1.1) and taking the positive root.

- Then
dfyi?)

dr 2 <1_9U§)é <_
1
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- The formula for arc length in this quadrant then gives
1 2 2
s:/ 1+x_§(1—x§>da:
0
1 1
= / x” 3dx
0

=3/2

- Therefore the total length of the astroid is 6 units.

- Note: If it is easier to write the curve as a function of y, i.e. x = g(y) then use
Y2
5= V144 (y)*dy
Y1

where ¢'(y) is % and y; and yo are y-values at the end points of the curve.

(1.9)
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Example 1.2 - Separable differential equations

Solve the following differential equations

(a)

dy
= =— 1.10
7y = %Y (1.10)
(b) .
i —k(T — 30°), T7(0) = 100° (1.11)
where k is a constant.
(a) - No initial condition given, therefore we expect a family of solutions.
- Separating the variables gives
1
/—dyz —/a:dx (1.12)
)
1
= lny:—§m2+0 (1.13)
=  y=Ae 3" (1.14)

where we have introduced a new constant A = €.

- You can verify your solution by substituting it, and its derivative back into (1.10) and
check that it is satisfied.

- Sketch of solutions for values of A € [-2,2].

y




1 INTEGRATION APPLICATIONS )

(b) - This DE comes from Newton’s Law of cooling: it represents the evolution of the temper-
ature T of a body initially at 100°, in a room of 30° degrees.

- Separate the variables:

/T_130 dT:/—kdt (1.15)
= In(T —30)= —kt +C (1.16)
= T —-30=Ae " where A = ¢ (1.17)

= T=Ae"+30 (1.18)

- Now use the initial condition to find C":

T(0) = A+ 30 = 100 (1.19)
= A=70 (1.20)

- And so the evolution of the body’s temperature satisfies
T="70e " +30 (1.21)

- Note that limy_, o, T'(t) = 30° as one would expect physically.

T
100
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2 Improper Integrals
e Determine whether integrals with discontinuities in the integrand converge
e Evaluate these improper integrals
Example 2.1
Determine whether the following integrals converge. if they do, find their value.
(a)
&0 2
/ rxe v dr (2.1)
0
(b)
21
/ dx (2.2)
0 2—x
(a) - This is an improper integral due to the infinite upper boundary.
- We may write it as
t
I=1lm [ ze®da (2.3)
t—o00 0
- We may integrate using the substitution
u=12> = du=2xdr (2.4)
Then
t2
R H —u
I= 5 tlggo ; e “du (2.5)
1 T (22
=z A el (2.6
L im (1— e (2.7)
=g lim (1) -
1
== 2.8
- (28)
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(b) - This integral is improper since the integrand is not continuous at the upper boundary.
- Write it as
|

I = lim dx 2.9
t—2- Jo V2—x (2:9)

t
= lim (—2(2 —g;)l/?) (2.10)

t—2- 0
— lim (—2\/2 —t+2\/§) (2.11)

t—2—

=2V2 (2.12)
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3 Polar Coordinates

e Convert between cartesian and polar coordinates

e Sketch curves expressed in polar coordinates

Example 3.1

Convert the following curve into Cartesian coordinates

1
2
_ 3.1
" cos 20 (3.1)

Recall that the map between Cartesians and Polars may be expressed as

x=rcosf, y=rsinf (3.2)

- Using the identity cos 26 = cos? # — sin? § we have

1
2 _ 3.3
T T cos?h —sin’h (8:3)
= 712(cos’f —sin?0) = 1 (3.4)
= -y =1 (3.5)

which is the equation for a hyperbola.

- Note that the polar form is illuminating for a sketch - one can see straight away that there
are asymptotes 6 = /4.
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4 Complex Numbers

Operations on complex numbers (multiplication / division etc.)

Polar form of complex numbers

DeMoivre’s Theorem

Integration using complex numbers

Complex roots

Example 4.1

Write the following complex numbers in standard form:

@ 1+
T (4.1)
) 3
(1 + \/§j) (4.2)

(a) We may simplify quotients of complex numbers by multiplying through by the complex con-
jugate of the denominator:

1+  (1+7)?

= a0 ) -
:1+Qg'+j2 (4.4)
- (45)

Alternatively we can use polar form (nice when multiplying and dividing complex numbers):
14§ =21/,  1—j=+2e47 (4.6)
and so

1+J: \/§€4 A:e%]:j (47)
l—j 2 %I
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(b) Now that there’s a lot of multiplication involved, we should definitely convert to polars:

r=v1+3=4, tanf =3 = 6= g (0 in 1st quadrant) (4.8)

Then ‘
1+V3j=2e37 (4.9)

and so
a0\ 9

(14 V35)3 = (2 e§7> (De Moivre’s Theorem) (4.10)
=8e™ (4.11)
S (4.12)

This is clear geometrically in the complex plane recalling that upon multiplying complex num-
bers, the moduli get multiplied and the arguments get added:

()
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Example 4.2
Use complex numbers to evaluate the following integral:
/ e cos 3x dx (4.13)
- Note that cos 3z is the real part of e¥% so
/625‘ cos 3z dr = /eh@? (eSjm) de =R (/ e(2+37) d:p) . (4.14)
- Evaluating the complex integral gives
, 1 4 _
2+3)z g, — 2+3))z 4 & 4.15
/ e x o Sje + ( )
2—-3j _
= T‘jez’” (cos 3z + jsin3z) + C (4.16)
where C is a complex constant.
- Taking the real part gives us back our original integral:
2z 2 2x 3 2z _:
e“* cos 3z dr = —e“* cos 3x + 3¢ sin 3x+C (4.17)

where C' = R(C).
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Example 4.3
Find all the fourth roots of -16
- Write in polar form: ‘
r=16, 6=nm = —16=16e™ (4.18)
- However since the polar form is invariant to adding multiples of 27 to 6 we may write
—16 = 16€’™ = 16¢7(7T2k7) (4.19)
for integer values of k.
- Taking the fourth root gives
(—16)1 = 1611 (1 1+3) 4.20)
— 9¢3(5+k3) (4.21)
- Now run through four consecutive values for k.
k=0 gives wo=2ei! =+/2(1+7) (4.22)
k=1 gives w =217 =2(—1+j) (4.23)
k=2 gives wy=2e17=+2(—1—j) (4.24)
k=3 gives wy=2eTI=+2(1— ) (4.25)




