
Examples 9
Integration Applications, Improper Integrals, Polar Coordinates

and Complex Numbers

November 28, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.∗

∗Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca
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1 Integration Applications

• Calculate the length of curves

• Solve separable differential equations (with and without initial conditions)

Example 1.1 - Arc length

Calculate the length of the astroid given by

x
2
3 + y

2
3 = 1 (1.1)

Recall that the arc-length of y = f(x) over the
interval [a, b] is given by

s =

∫ b

a

√
1 + f ′(x)2 dx (1.2)
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- The curve is symmetrical in transformations x→ −x and y → −y, therefore we can calculate
the length in one quadrant and quadruple it.

- In the quadrant {(x, y) : x > 0, y > 0}, we have

y =
(

1− x
2
3

) 3
2 (1.3)

upon rearranging (1.1) and taking the positive root.

- Then

dy

dx
=

3

2

(
1− x

2
3

) 1
2

(
−2

3
x−

1
3

)
(1.4)

= −x−
1
3

(
1− x

2
3

) 1
2 (1.5)
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- The formula for arc length in this quadrant then gives

s =

∫ 1

0

√
1 + x−

2
3

(
1− x

2
3

)
dx (1.6)

=

∫ 1

0
x−

1
3dx (1.7)

= 3/2 (1.8)

- Therefore the total length of the astroid is 6 units.

- Note: If it is easier to write the curve as a function of y, i.e. x = g(y) then use

s =

∫ y2

y1

√
1 + g′(y)2 dy (1.9)

where g′(y) is dg
dy and y1 and y2 are y-values at the end points of the curve.
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Example 1.2 - Separable differential equations

Solve the following differential equations

(a)
dy

dx
= −xy (1.10)

(b)
dT

dt
= −k(T − 30◦), T (0) = 100◦ (1.11)

where k is a constant.

(a) - No initial condition given, therefore we expect a family of solutions.

- Separating the variables gives ∫
1

y
dy = −

∫
xdx (1.12)

⇒ ln y = −1

2
x2 + C (1.13)

⇒ y = Ae−
1
2
x2 (1.14)

where we have introduced a new constant A = eC .

- You can verify your solution by substituting it, and its derivative back into (1.10) and
check that it is satisfied.

- Sketch of solutions for values of A ∈ [−2, 2].
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(b) - This DE comes from Newton’s Law of cooling: it represents the evolution of the temper-
ature T of a body initially at 100◦, in a room of 30◦ degrees.

- Separate the variables:∫
1

T − 30
dT =

∫
−k dt (1.15)

⇒ ln(T − 30) = −kt+ C (1.16)

⇒ T − 30 = Ae−kt where A = eC (1.17)

⇒ T = Ae−kt + 30 (1.18)

- Now use the initial condition to find C:

T (0) = A+ 30 = 100 (1.19)
⇒ A = 70 (1.20)

- And so the evolution of the body’s temperature satisfies

T = 70 e−kt + 30 (1.21)

- Note that limt→∞ T (t) = 30◦ as one would expect physically.
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2 Improper Integrals

• Determine whether integrals with discontinuities in the integrand converge

• Evaluate these improper integrals

Example 2.1

Determine whether the following integrals converge. if they do, find their value.

(a) ∫ ∞
0

x e−x
2
dx (2.1)

(b) ∫ 2

0

1√
2− x

dx (2.2)

(a) - This is an improper integral due to the infinite upper boundary.

- We may write it as

I = lim
t→∞

∫ t

0
xe−x

2
dx (2.3)

- We may integrate using the substitution

u = x2 ⇒ du = 2x dx (2.4)

Then

I =
1

2
lim
t→∞

∫ t2

0
e−udu (2.5)

=
1

2
lim
t→∞

(
−e−u

) ∣∣t2
0

(2.6)

=
1

2
lim
t→∞

(
1− e−t2

)
(2.7)

=
1

2
(2.8)
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(b) - This integral is improper since the integrand is not continuous at the upper boundary.

- Write it as

I = lim
t→2−

∫ t

0

1√
2− x

dx (2.9)

= lim
t→2−

(
−2(2− x)1/2

) ∣∣∣∣t
0

(2.10)

= lim
t→2−

(
−2
√

2− t+ 2
√

2
)

(2.11)

= 2
√

2 (2.12)
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3 Polar Coordinates

• Convert between cartesian and polar coordinates

• Sketch curves expressed in polar coordinates

Example 3.1

Convert the following curve into Cartesian coordinates

r2 =
1

cos 2θ
(3.1)

Recall that the map between Cartesians and Polars may be expressed as

x = r cos θ, y = r sin θ (3.2)

- Using the identity cos 2θ = cos2 θ − sin2 θ we have

r2 =
1

cos2 θ − sin2 θ
(3.3)

⇒ r2(cos2 θ − sin2 θ) = 1 (3.4)

⇒ x2 − y2 = 1 (3.5)

which is the equation for a hyperbola.

- Note that the polar form is illuminating for a sketch - one can see straight away that there
are asymptotes θ = ±π/4.
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4 Complex Numbers

• Operations on complex numbers (multiplication / division etc.)

• Polar form of complex numbers

• DeMoivre’s Theorem

• Integration using complex numbers

• Complex roots

Example 4.1

Write the following complex numbers in standard form:

(a)
1 + j

1− j
(4.1)

(b) (
1 +
√

3j
)3

(4.2)

(a) We may simplify quotients of complex numbers by multiplying through by the complex con-
jugate of the denominator:

1 + j

1− j
=

(1 + j)2

(1− j)(1 + j)
(4.3)

=
1 + 2j + j2

2
(4.4)

= j (4.5)

Alternatively we can use polar form (nice when multiplying and dividing complex numbers):

1 + j =
√

2e
π
4
j , 1− j =

√
2e−

π
4
j (4.6)

and so
1 + j

1− j
=

√
2e

π
4
j

√
2e−

π
4
j

= e
π
2
j = j (4.7)
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(b) Now that there’s a lot of multiplication involved, we should definitely convert to polars:

r =
√

1 + 3 = 4, tan θ =
√

3 ⇒ θ =
π

3
(θ in 1st quadrant) (4.8)

Then
1 +
√

3j = 2 e
π
3
j (4.9)

and so

(1 +
√

3j)3 =
(

2 e
π
3
j
)3

(De Moivre’s Theorem) (4.10)

= 8 eπj (4.11)
= −8 (4.12)

This is clear geometrically in the complex plane recalling that upon multiplying complex num-
bers, the moduli get multiplied and the arguments get added:
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Example 4.2

Use complex numbers to evaluate the following integral:∫
e2x cos 3x dx (4.13)

- Note that cos 3x is the real part of e3jx so∫
e2x cos 3x dx =

∫
e2x<

(
e3jx

)
dx = <

(∫
e(2+3j)x dx

)
. (4.14)

- Evaluating the complex integral gives∫
e(2+3j)x dx =

1

2 + 3j
e(2+3j)x + C̄ (4.15)

=
2− 3j

13
e2x (cos 3x+ j sin 3x) + C̄ (4.16)

where C̄ is a complex constant.

- Taking the real part gives us back our original integral:∫
e2x cos 3x dx =

2

13
e2x cos 3x+

3

13
e2x sin 3x+ C (4.17)

where C = <(C̄).
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Example 4.3

Find all the fourth roots of -16

- Write in polar form:
r = 16, θ = π ⇒ −16 = 16eπj (4.18)

- However since the polar form is invariant to adding multiples of 2π to θ we may write

−16 = 16ejπ = 16ej(π+2kπ) (4.19)

for integer values of k.

- Taking the fourth root gives

(−16)
1
4 = 16

1
4 ej(

π
4
+k π

2 ) (4.20)

= 2ej(
π
4
+k π

2 ) (4.21)

- Now run through four consecutive values for k.

k = 0 gives ω0 = 2e
π
4
j =
√

2(1 + j) (4.22)

k = 1 gives ω1 = 2e
3π
4
j =
√

2(−1 + j) (4.23)

k = 2 gives ω2 = 2e
5π
4
j =
√

2(−1− j) (4.24)

k = 3 gives ω3 = 2e
7π
4
j =
√

2(1− j) (4.25)


