Examples 8 Further Integration Techniques and Applications

November 21, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

[^0]
1 Further Integration Techniques

- Practise using trig / hyperbolic substitutions where appropriate
- Integrate rational functions using their partial fraction decomposition

Example 1.1 - Direct Trig Substitutions

Calculate the following integrals using an appropriate trig substition
(a)

$$
\begin{equation*}
\int \sqrt{4-x^{2}} d x \tag{1.1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int_{0}^{1} \frac{w}{\left(w^{2}+1\right)^{\frac{3}{2}}} d w \tag{1.2}
\end{equation*}
$$

Notes :

When you see the following forms in the integrand, consider the corresponding trig substitution.

Form in integrand	Trig substitution
$a^{2}-x^{2}$	$x=a \sin \theta$
$a^{2}+x^{2}$	$x=a \tan \theta$
$x^{2}-a^{2}$	$x=a \sec \theta$

(a) $\int \sqrt{4-x^{2}} d x$

Set

$$
\begin{equation*}
x=2 \sin \theta \quad \Rightarrow \quad d x=2 \cos \theta d \theta \tag{1.3}
\end{equation*}
$$

Note that the integrand is valid only for $x \in[-2,2]$ so we may then assume $\theta \in[-\pi / 2, \pi / 2]$.

Then

$$
\begin{align*}
\int \sqrt{4-x^{2}} d x & =\int \sqrt{4-4 \sin ^{2} \theta} 2 \cos \theta d \theta \tag{1.4}\\
& =4 \int \cos ^{2} \theta d \theta \quad \text { since } \cos \theta>0 \text { in this range of } \theta \tag{1.5}\\
& =2 \int(\cos 2 \theta+1) d \theta \quad \text { using } \cos ^{2} \theta=\frac{1}{2}(\cos 2 \theta+1) \tag{1.6}\\
& =\sin 2 \theta+2 \theta+C \tag{1.7}
\end{align*}
$$

We should leave our answer in terms of the original variable, x. Using trig identities again, we have

$$
\begin{align*}
\int \sqrt{4-x^{2}} d x & =2 \sin \theta \cos \theta+2 \theta+C \tag{1.9}\\
& =x \sqrt{1-\frac{x^{2}}{4}}+2 \sin ^{-1}\left(\frac{x}{2}\right)+C \tag{1.10}
\end{align*}
$$

(b) $\int_{0}^{1} \frac{w}{\left(w^{2}+1\right)^{\frac{3}{2}}} d w$

Set

$$
\begin{equation*}
w=\tan \theta \quad \Rightarrow \quad d w=\sec ^{2} \theta d \theta \tag{1.11}
\end{equation*}
$$

Limits:

$$
\begin{align*}
& w=0 \quad \Rightarrow \quad \theta=0 \tag{1.12}\\
& w=1 \quad \Rightarrow \quad \theta=\frac{\pi}{4} \tag{1.13}
\end{align*}
$$

Then

$$
\begin{align*}
\int_{0}^{1} \frac{w}{\left(w^{2}+1\right)^{\frac{3}{2}}} d w & =\int_{0}^{\pi / 4} \frac{\tan \theta}{\sec ^{3} \theta} \sec ^{2} \theta d \theta \tag{1.14}\\
& =\int_{0}^{\pi / 4} \sin \theta \tag{1.15}\\
& =-\left.\cos \theta\right|_{0} ^{\pi / 4} \tag{1.16}\\
& =1-\frac{1}{\sqrt{2}} \tag{1.17}
\end{align*}
$$

Example 1.2-More general forms

Calculate the following integrals using an appropriate trig substitution
(a)

$$
\begin{equation*}
\int \frac{1}{x^{2}+2 x+5} d x \tag{1.18}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\int \frac{\sin ^{-1} x}{x^{2}} d x \tag{1.19}
\end{equation*}
$$

(a) $\int \frac{1}{x^{2}+2 x+5} d x$

In completing the square, we put the integrand into a similar form to the previous examples.

$$
\begin{equation*}
I=\int \frac{1}{x^{2}+2 x+5} d x=\int \frac{1}{(x+1)^{2}+4} d x \tag{1.20}
\end{equation*}
$$

We notice the form " $a^{2}+x^{2}$ " on the denominator, so use the substitution

$$
\begin{equation*}
x+1=2 \tan \theta \quad \Rightarrow \quad d x=2 \sec ^{2} \theta d \theta \tag{1.21}
\end{equation*}
$$

Now

$$
\begin{align*}
I & =\int \frac{1}{4 \tan ^{2} \theta+4} 2 \sec ^{2} \theta d \theta \tag{1.22}\\
& =\frac{1}{2} \int d \theta \tag{1.23}\\
& =\frac{1}{2} \theta+C \tag{1.24}\\
& =\frac{1}{2} \tan ^{-1}\left(\frac{x+1}{2}\right)+C \tag{1.25}
\end{align*}
$$

(b) $\int \frac{\sin ^{-1} x}{x^{2}} d x$

Seeing $\sin ^{-1}(x)$ in the integrand should make you think IBP. Set

$$
\begin{align*}
& u=\sin ^{-1} x \quad \Rightarrow \quad d u=\frac{1}{\sqrt{1-x^{2}}} d x \tag{1.26}\\
& d v=\frac{1}{x^{2}} d x \quad \Rightarrow \quad v=-\frac{1}{x} \tag{1.27}
\end{align*}
$$

Then

$$
\begin{equation*}
I=\int \frac{\sin ^{-1} x}{x^{2}} d x=-\frac{1}{x} \sin ^{-1} x+\int \frac{1}{x \sqrt{1-x^{2}}} d x \tag{1.28}
\end{equation*}
$$

The second integral requires a trig substitution. Let

$$
\begin{equation*}
x=\sin \theta \quad \Rightarrow \quad d x=\cos \theta d \theta \tag{1.29}
\end{equation*}
$$

Then

$$
\begin{align*}
\int \frac{1}{x \sqrt{1-x^{2}}} d x & =\int \frac{1}{\sin \theta \cos \theta} \cos \theta d \theta \tag{1.30}\\
& =\int \csc \theta d \theta \tag{1.31}\\
& =-\ln |\csc \theta+\cot \theta|+C \tag{1.32}
\end{align*}
$$

To write this back in terms of x, consider the triangle that represents the situation:

We can then read off

$$
\begin{equation*}
\csc \theta=\frac{1}{x} \quad \cot \theta=\frac{\sqrt{1-x^{2}}}{x} \tag{1.33}
\end{equation*}
$$

and so

$$
\begin{equation*}
I=-\frac{1}{x} \sin ^{-1} x-\ln \left|\frac{1+\sqrt{1-x^{2}}}{x}\right|+C \tag{1.34}
\end{equation*}
$$

Example 1.3-Integrating rational functions

Evaluate $\quad I=\int \frac{3 x}{x^{2}+x-2} d x$

We could solve this by completing the square and doing a trig substitution. However, if the denominator factorises nicely, then a partial fraction decomposition is probably faster...

$$
\begin{equation*}
\frac{3 x}{x^{2}+x-2}=\frac{3 x}{(x+2)(x-1)} \equiv \frac{A}{x+2}+\frac{B}{x-1} \tag{1.36}
\end{equation*}
$$

And so

$$
\begin{equation*}
A(x-1)+B(x+2) \equiv 3 x \tag{1.37}
\end{equation*}
$$

Setting $x=1$ gives $B=1$. Setting $x=-2$ gives $A=2$. Then

$$
\begin{align*}
I & =\int\left(\frac{2}{x+2}+\frac{1}{x-1}\right) d x \tag{1.38}\\
& =2 \ln |x+2|+\ln |x-1|+C \tag{1.39}
\end{align*}
$$

2 Areas Between Curves

- Set up integrals that represent particular areas.
- Integrate with respect to the horizontal or vertical coordinate where appropriate.

Example 2.1 - Vertically simple

Find the area between the curves

$$
\begin{equation*}
f(x)=x^{2}+2 \quad \text { and } \quad g(x)=x+1 \tag{2.1}
\end{equation*}
$$

over the interval $x \in[-2,2]$.
A quick sketch shows that these two curves do not intersect and so the region we are evaluating is vertically simple.

Since $f(x) \geq g(x)$ on the interval $x \in[-2,2]$, we can conclude that the desired area is

$$
\begin{equation*}
A=\int_{-2}^{2}(f(x)-g(x)) d x \tag{2.2}
\end{equation*}
$$

Since the interval of integration is symmetrical, we can break up the integrand into its even and odd parts to speed up the calculation:

$$
\begin{align*}
A & =\int_{-2}^{2}\left(x^{2}-x+1\right) d x \tag{2.3}\\
& =\int_{-2}^{2} x^{2} d x-\int_{-2}^{2} x d x+\int_{-2}^{2} 1 d x \tag{2.4}\\
& =2 \int_{0}^{2} x^{2} d x+\int_{-2}^{2} d x \tag{2.5}\\
& =\frac{16}{3}+4=\frac{28}{3} \tag{2.6}
\end{align*}
$$

Example 2.2-Intersecting curves

Find the area enclosed by the curves

$$
\begin{equation*}
y_{1}=\frac{3 \sqrt{3}}{\pi} x, \quad y_{2}=\frac{3}{2 \pi} x, \quad y_{3}=\cos x \tag{2.7}
\end{equation*}
$$

as shown in the diagram below:

We see that the points of intersection occur at $x=\pi / 6$ and $x=\pi / 3$. The bounded area is vertically simple if broken up into two intervals:

$$
\begin{align*}
A & =\int_{0}^{\pi / 6}\left(y_{1}-y_{2}\right) d x+\int_{\pi / 6}^{\pi / 3}\left(y_{3}-y_{2}\right) d x \tag{2.8}\\
& =\int_{0}^{\pi / 6} y_{1} d x+\int_{\pi / 6}^{\pi / 3} y_{3} d x-\int_{0}^{\pi / 3} y_{2} d x \tag{2.9}\\
& =A_{1}+A_{2}-A_{3} \tag{2.10}
\end{align*}
$$

Then we have

$$
\begin{align*}
& A_{1}=\int_{0}^{\pi / 6} \frac{3 \sqrt{3}}{\pi} x d x \tag{2.11}\\
& =\left.\frac{3 \sqrt{3}}{\pi} \frac{1}{2} x^{2}\right|_{0} ^{\pi / 6} \tag{2.12}\\
& =\frac{3 \sqrt{3}}{\pi} \frac{1}{2} \frac{\pi^{2}}{36}=\frac{\sqrt{3} \pi}{24}, \tag{2.13}\\
& A_{2}=\int_{\pi / 6}^{\pi / 3} \cos x d x \tag{2.14}\\
& =\left.\sin x\right|_{\pi / 6} ^{\pi / 3} \tag{2.15}\\
& =\frac{\sqrt{3}}{2}-\frac{1}{2} \tag{2.16}
\end{align*}
$$

and

$$
\begin{align*}
A_{3} & =\int_{0}^{\pi / 3} \frac{3}{2 \pi} x d x \tag{2.17}\\
& =\left.\frac{3}{2 \pi} \frac{1}{2} x^{2}\right|_{0} ^{\pi / 3} \tag{2.18}\\
& =\frac{3}{2 \pi} \frac{1}{2} \frac{\pi^{2}}{9} \tag{2.19}\\
& =\frac{\pi}{12} \tag{2.20}
\end{align*}
$$

The enclosed area is then

$$
\begin{equation*}
A=\frac{\sqrt{3} \pi}{24}+\frac{\sqrt{3}-1}{2}-\frac{\pi}{12} \tag{2.21}
\end{equation*}
$$

Example 2.3-Integration over y

Find the area enclosed by the following curves using horizontal integration (integration along the y -axis)

$$
\begin{equation*}
x=9-y^{2}, \quad \text { and } \quad x=5 \tag{2.22}
\end{equation*}
$$

Verify your result with vertical integration.

Draw a sketch for visualisation and work out the points of intersection.

The curves intersect when

$$
\begin{equation*}
9-y^{2}=5 \quad \Rightarrow \quad y= \pm 2 \tag{2.23}
\end{equation*}
$$

Integrating over y, the area is then

$$
\begin{align*}
A & =\int_{-2}^{2}\left(9-y^{2}-5\right) d y \tag{2.24}\\
& =2 \int_{0}^{2}\left(4-y^{2}\right) d y \tag{2.25}\\
& =\left.2\left(4 y-\frac{1}{3} y^{3}\right)\right|_{0} ^{2} \tag{2.26}\\
& =2\left(8-\frac{8}{3}\right) \tag{2.27}\\
& =\frac{32}{3} \tag{2.28}
\end{align*}
$$

Alternatively, we could do the integral over x, adjusting the limits appropriately. By symmetry of the area

$$
\begin{align*}
A & =2 \int_{5}^{9} \sqrt{9-x} d x \tag{2.29}\\
& =\left.2\left(-\frac{2}{3}(9-x)^{3 / 2}\right)\right|_{5} ^{9} \tag{2.30}\\
& =2\left(\frac{2}{3} 4^{3 / 2}\right) \tag{2.31}\\
& =\frac{32}{3} \tag{2.32}
\end{align*}
$$

[^0]: *Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

