Examples 8
Further Integration Techniques and Applications

November 21, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.*

*Created by Thomas Bury - please send comments or corrections to tbury@uuwaterloo.ca



1 FURTHER INTEGRATION TECHNIQUES

1 Further Integration Techniques

e Practise using trig / hyperbolic substitutions where appropriate

e Integrate rational functions using their partial fraction decomposition

Example 1.1 - Direct Trig Substitutions

Calculate the following integrals using an appropriate trig substition

(a)

(b)

/de

1
/ SC R
0 (w2+1)2

Notes :

When you see the following forms in the integrand, consider the corresponding trig substitution.

(a) [ V4 —a?dx

Set

Form in integrand Trig substitution
a? — x? r =asind
a? + 22 Tz =atanf
e Tz = asecl

r=2sinf = dxr=2cosldb

(1.3)

Note that the integrand is valid only for x € [—2,2] so we may then assume 6 € [—7/2,7/2].
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Then
/\/4—332 dx:/\/4—4sin29200s0d9 (1.4)
=4 / cos? 0 df since cosf > 0 in this range of 6 (1.5)
=2 / (cos20 + 1) db using cos” § = %(cos 20 +1) (1.6)
= sin20 + 20 + C (1.7)
1.8)

We should leave our answer in terms of the original variable, x. Using trig identities again,
we have

/\/4—$2d$:28in0C089+29+0 (1.9)

2
- _ 1 (E
= 21/1 -7+ 2sin (2)+C’ (1.10)

(b) fol S dw

(w2+1)2
Set
w=tanf = dw = sec®fdb. (1.11)
Limits:
w=0 = 6=0 (1.12)
w=1 = 9:% (1.13)
Then
/ Lgdw = / aI; sec? 0 df (1.14)
0 (w?+1)2 o sec’f
w/4
:/ sin 0 (1.15)
0
= —C089’3/4 (1.16)
1oL (1.17)
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Example 1.2 - More general forms

Calculate the following integrals using an appropriate trig substitution

(a)

1
/ PR L (1.18)
(b) L
sin” x
/ o (1.19)

(2) [ rpagsde

In completing the square, we put the integrand into a similar form to the previous examples.

1 1
= —de= | ——d 1.20
/:c2+2:c—|—5x /(x+1)2+4x (1.20)
We notice the form "a? + 22" on the denominator, so use the substitution
r+1=2tand = dx=2sec’fdb (1.21)
Now
1
I= [ ———2sec’0db 1.22
/4tan20+4 Sec (1.22)
1
=— [ do 1.23
5/ (1.29
1
= 59 +C (1.24)
1 1
= 5 tan™’ (x; ) +C (1.25)

(b) f sin;1 T ]

x
Seeing sin~!(z) in the integrand should make you think IBP. Set
1
u=sin'z = du=-——dr (1.26)

V1— 22

1 1
dv = ?d:c = v= — (1.27)
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Then

- 1
I:/Sm Tdr = —~sin™ x (1.28)

1
1
|
z? x x+/$\/1—x2

The second integral requires a trig substitution. Let

x=sinf = dz = cosfdf (1.29)
Then
/1dx = /ﬂcosGdQ (1.30)
V1 — 22 sin 6 cos 0
= /csc 6do (1.31)
= —1In|csch+cotb| +C (1.32)

To write this back in terms of x, consider the triangle that represents the situation:

1
x
g [ ]
vV1-—22
We can then read off .
1 v1-—
cscd =— coth = 7‘%, (1.33)
x x
and so
S — 2
I=——sin'z—In Trviza? +C (1.34)
z x
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Example 1.3 - Integrating rational functions

Evaluate

3x
I=| —— 1.
/:c2+x—2dx (1.35)

We could solve this by completing the square and doing a trig substitution. However, if the denom-
inator factorises nicely, then a partial fraction decomposition is probably faster...

3z 3x A B

_ 1.36
2?+r—-2 (r+2)(x—1) :U—|—2+ac—1 (1.36)

And so
Alx —1)+ Bz +2) =3z (1.37)

Setting © = 1 gives B = 1. Setting z = —2 gives A = 2. Then

IZ/(xiZ—i_inl)dm (1.38)

=2Inlz+2|+Injz—-1/+C (1.39)
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2 Areas Between Curves

e Set up integrals that represent particular areas.

e Integrate with respect to the horizontal or vertical coordinate where appropriate.

Example 2.1 - Vertically simple

Find the area between the curves

f(z)=2*>+2 and g(z)=z+1 (2.1)

over the interval z € [-2,2].

A quick sketch shows that these two curves do not intersect and so the region we are evaluating is
vertically simple.

Since f(x) > g(x) on the interval x € [—2,2], we can conclude that the desired area is

2
A= [ (@) = glw)da (2:2)

Since the interval of integration is symmetrical, we can break up the integrand into its even and
odd parts to speed up the calculation:
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2
A= / (2 —z+1)de (2.3)
-2
2 2 2
= / 22de — / xdz +/ ldx (2.4)
-2 -2 -2
2 2
= 2/ r2dx + / dx (2.5)
0 -2
16 28
— —14=2 2.6
Example 2.2 - Intersecting curves
Find the area enclosed by the curves
3v3 3
= ix, Yo = —T, Y3 = COST (2.7)
s 27
as shown in the diagram below:
y
+x
: . X
0 6 i3 /2

We see that the points of intersection occur at x = 7/6 and x = 7/3. The bounded area is vertically

simple if broken up into two intervals:
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/6 /3
A= / (y1 — y2)dx + // (y3 — yo)dx
0 /6

/6 w/3 w/3
2/ yld$+/ yzdSU/ yodx
0 /6 0

=A1 + Ay — Ag

Then we have

/6
Alz/ %xdac
0

T
BEVER
T 2 |
_3\/3 1772_@
™ 236 24’

/3
Ay = / cos rdx
w/6

. /3
=76

= S
™

V3 o1

and

The enclosed area is then

(2.11)
(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)
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Example 2.3 - Integration over y

10

Find the area enclosed by the following curves using horizontal integration (integration along the

y-axis)
r=9—y* and =5 (2.22)
Verify your result with vertical integration.
Draw a sketch for visualisation and work out the points of intersection.
Yy
3 \
ar
1 n
2 4 B 8 X
-1F
-2 /
-3
The curves intersect when
9—y> =5 = y=42 (2.23)
Integrating over y, the area is then
2
A= / (9 —y* - 5)dy (2.24)
-2
2
= 2/ (4 —y?)dy (2.25)
0
1 2
=2 <4y - y3> (2.26)
3 0
8
=2(8—-+ 2.27
(5-3) (2:27)
32
= — (2.28)
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Alternatively, we could do the integral over z, adjusting the limits appropriately. By symmetry of
the area

9
A= 2/5 V9 -z dx (2.29)
=2 <—§(9 — w)3/2> i (2.30)
p <§43/2) (2.31)
32

=5 (2.32)



