
Examples 8
Further Integration Techniques and Applications

November 21, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.∗

∗Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca
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1 Further Integration Techniques

• Practise using trig / hyperbolic substitutions where appropriate

• Integrate rational functions using their partial fraction decomposition

Example 1.1 - Direct Trig Substitutions

Calculate the following integrals using an appropriate trig substition

(a) ∫ √
4− x2 dx (1.1)

(b) ∫ 1

0

w

(w2 + 1)
3
2

dw (1.2)

Notes :

When you see the following forms in the integrand, consider the corresponding trig substitution.

Form in integrand Trig substitution

a2 − x2 x = a sin θ
a2 + x2 x = a tan θ
x2 − a2 x = a sec θ

(a)
∫ √

4− x2 dx
Set

x = 2 sin θ ⇒ dx = 2 cos θ dθ (1.3)

Note that the integrand is valid only for x ∈ [−2, 2] so we may then assume θ ∈ [−π/2, π/2].
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Then ∫ √
4− x2 dx =

∫ √
4− 4 sin2 θ 2 cos θ dθ (1.4)

= 4

∫
cos2 θ dθ since cos θ > 0 in this range of θ (1.5)

= 2

∫
(cos 2θ + 1) dθ using cos2 θ =

1

2
(cos 2θ + 1) (1.6)

= sin 2θ + 2θ + C (1.7)
(1.8)

We should leave our answer in terms of the original variable, x. Using trig identities again,
we have ∫ √

4− x2 dx = 2 sin θ cos θ + 2θ + C (1.9)

= x

√
1− x2

4
+ 2 sin−1

(x
2

)
+ C (1.10)

(b)
∫ 1
0

w

(w2+1)
3
2
dw

Set
w = tan θ ⇒ dw = sec2 θdθ. (1.11)

Limits:

w = 0 ⇒ θ = 0 (1.12)

w = 1 ⇒ θ =
π

4
(1.13)

Then ∫ 1

0

w

(w2 + 1)
3
2

dw =

∫ π/4

0

tan θ

sec3 θ
sec2 θ dθ (1.14)

=

∫ π/4

0
sin θ (1.15)

= − cos θ
∣∣π/4
0

(1.16)

= 1− 1√
2

(1.17)
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Example 1.2 - More general forms

Calculate the following integrals using an appropriate trig substitution

(a) ∫
1

x2 + 2x+ 5
dx (1.18)

(b) ∫
sin−1 x

x2
dx (1.19)

(a)
∫

1
x2+2x+5

dx

In completing the square, we put the integrand into a similar form to the previous examples.

I =

∫
1

x2 + 2x+ 5
dx =

∫
1

(x+ 1)2 + 4
dx (1.20)

We notice the form "a2 + x2" on the denominator, so use the substitution

x+ 1 = 2 tan θ ⇒ dx = 2 sec2 θdθ (1.21)

Now

I =

∫
1

4 tan2 θ + 4
2 sec2 θdθ (1.22)

=
1

2

∫
dθ (1.23)

=
1

2
θ + C (1.24)

=
1

2
tan−1

(
x+ 1

2

)
+ C (1.25)

(b)
∫

sin−1 x
x2

dx

Seeing sin−1(x) in the integrand should make you think IBP. Set

u = sin−1 x ⇒ du =
1√

1− x2
dx (1.26)

dv =
1

x2
dx ⇒ v = −1

x
(1.27)
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Then

I =

∫
sin−1 x

x2
dx = −1

x
sin−1 x+

∫
1

x
√
1− x2

dx (1.28)

The second integral requires a trig substitution. Let

x = sin θ ⇒ dx = cos θdθ (1.29)

Then ∫
1

x
√
1− x2

dx =

∫
1

sin θ cos θ
cos θ dθ (1.30)

=

∫
csc θdθ (1.31)

= − ln | csc θ + cot θ|+ C (1.32)

To write this back in terms of x, consider the triangle that represents the situation:

We can then read off

csc θ =
1

x
cot θ =

√
1− x2
x

, (1.33)

and so

I = −1

x
sin−1 x− ln

∣∣∣∣∣1 +
√
1− x2
x

∣∣∣∣∣+ C (1.34)
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Example 1.3 - Integrating rational functions

Evaluate
I =

∫
3x

x2 + x− 2
dx (1.35)

We could solve this by completing the square and doing a trig substitution. However, if the denom-
inator factorises nicely, then a partial fraction decomposition is probably faster...

3x

x2 + x− 2
=

3x

(x+ 2)(x− 1)
≡ A

x+ 2
+

B

x− 1
(1.36)

And so
A(x− 1) +B(x+ 2) ≡ 3x (1.37)

Setting x = 1 gives B = 1. Setting x = −2 gives A = 2. Then

I =

∫ (
2

x+ 2
+

1

x− 1

)
dx (1.38)

= 2 ln |x+ 2|+ ln |x− 1|+ C (1.39)
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2 Areas Between Curves

• Set up integrals that represent particular areas.

• Integrate with respect to the horizontal or vertical coordinate where appropriate.

Example 2.1 - Vertically simple

Find the area between the curves

f(x) = x2 + 2 and g(x) = x+ 1 (2.1)

over the interval x ∈ [−2, 2].

A quick sketch shows that these two curves do not intersect and so the region we are evaluating is
vertically simple.

Since f(x) ≥ g(x) on the interval x ∈ [−2, 2], we can conclude that the desired area is

A =

∫ 2

−2
(f(x)− g(x)) dx (2.2)

Since the interval of integration is symmetrical, we can break up the integrand into its even and
odd parts to speed up the calculation:
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A =

∫ 2

−2

(
x2 − x+ 1

)
dx (2.3)

=

∫ 2

−2
x2dx−

∫ 2

−2
xdx+

∫ 2

−2
1dx (2.4)

= 2

∫ 2

0
x2dx+

∫ 2

−2
dx (2.5)

=
16

3
+ 4 =

28

3
(2.6)

Example 2.2 - Intersecting curves

Find the area enclosed by the curves

y1 =
3
√
3

π
x, y2 =

3

2π
x, y3 = cosx (2.7)

as shown in the diagram below:

We see that the points of intersection occur at x = π/6 and x = π/3. The bounded area is vertically
simple if broken up into two intervals:
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A =

∫ π/6

0
(y1 − y2)dx+

∫ π/3

π/6
(y3 − y2)dx (2.8)

=

∫ π/6

0
y1dx+

∫ π/3

π/6
y3dx−

∫ π/3

0
y2dx (2.9)

= A1 +A2 −A3 (2.10)

Then we have

A1 =

∫ π/6

0

3
√
3

π
x dx (2.11)

=
3
√
3

π

1

2
x2
∣∣∣∣π/6
0

(2.12)

=
3
√
3

π

1

2

π2

36
=

√
3π

24
, (2.13)

A2 =

∫ π/3

π/6
cosxdx (2.14)

= sinx
∣∣π/3
π/6

(2.15)

=

√
3

2
− 1

2
(2.16)

and

A3 =

∫ π/3

0

3

2π
xdx (2.17)

=
3

2π

1

2
x2
∣∣∣∣π/3
0

(2.18)

=
3

2π

1

2

π2

9
(2.19)

=
π

12
(2.20)

The enclosed area is then

A =

√
3π

24
+

√
3− 1

2
− π

12
(2.21)
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Example 2.3 - Integration over y

Find the area enclosed by the following curves using horizontal integration (integration along the
y-axis)

x = 9− y2, and x = 5 (2.22)

Verify your result with vertical integration.

Draw a sketch for visualisation and work out the points of intersection.

The curves intersect when
9− y2 = 5 ⇒ y = ±2 (2.23)

Integrating over y, the area is then

A =

∫ 2

−2
(9− y2 − 5)dy (2.24)

= 2

∫ 2

0
(4− y2)dy (2.25)

= 2

(
4y − 1

3
y3
) ∣∣∣∣2

0

(2.26)

= 2

(
8− 8

3

)
(2.27)

=
32

3
(2.28)
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Alternatively, we could do the integral over x, adjusting the limits appropriately. By symmetry of
the area

A = 2

∫ 9

5

√
9− x dx (2.29)

= 2

(
−2

3
(9− x)3/2

) ∣∣∣∣9
5

(2.30)

= 2

(
2

3
43/2

)
(2.31)

=
32

3
. (2.32)


