
Examples 7
Riemann Integrals, The Fundamental Theorem of Calculus and

Integration Techniques

November 14, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.∗

∗Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca
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1 Riemann Integrals

• Compute integrals from first principles using the definition of the Riemann integral

Example 1

Calculate the following integrals as limits of Riemann sums:

(a) ∫ 2

0
3 dx (1.1)

(b) ∫ 2

1
x3 dx (1.2)

Recall the definition of the definite (Riemann) integral for a continuous function f on [a, b]:∫ b

a
f(x)dx = lim

n→∞

n∑
i=1

f(x∗i )∆x (1.3)

where ∆x = (b− a)/n, x∗i ∈ [xi−1, xi] and xi = a+ i∆x.

We may use the following identities:

n∑
k=1

1 = n
n∑
k=1

k =
1

2
n(n+ 1),

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1)

n∑
k=1

k3 =

(
n(n+ 1)

2

)2

(1.4)

(a) A diagram shows straight away that this area is 6, however let’s check that the definition agrees.

- Segment width

∆x =
b− a
n

=
2

n
(1.5)

- Segment evaluation point x∗

Choose x∗i = xi (right side of segment) so

x∗i = a+ i∆x =
2i

n
. (1.6)

- The Riemann Sum
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Rn =
n∑
i=1

3.
2

n
=

6

n

n∑
i=1

1 = 6 (1.7)

- Take the limit ∫ 2

0
3dx = lim

n→∞
Rn = 6 (1.8)

Note that in this case the Riemann sum does not depend on n (the number of segments we
divide the interval up in to). This is because the area is already a rectangle!

(b) A bit harder:

- Segment width

∆x =
b− a
n

=
1

n
(1.9)

- Segment evaluation point x∗

x∗i = a+ i∆x = 1 +
i

n
. (1.10)

- The Riemann Sum

Rn =

n∑
i=1

(x∗i )
3∆x (1.11)

=

n∑
i=1

(
1 +

i

n

)3( 1

n

)
(1.12)

=

n∑
i=1

(
1 +

3i

n
+

3i2

n2
+
i3

n3

)(
1

n

)
(1.13)

=
n∑
i=1

1 +
3

n

n∑
i=1

i+
3

n2

n∑
i=1

i2 +
1

n3

n∑
i=1

i3
(

1

n

)
(1.14)

= 1 +
3

n2

(
1

2
n(n+ 1)

)
+

3

n3

(
1

6
n(n+ 1)(2n+ 1)

)
+

1

n4

(
n(n+ 1)

2

)2

(1.15)

(1.16)

- Take the limit ∫ 2

1
x3dx = lim

n→∞
Rn (1.17)

= 1 +
3

2
+ 1 +

1

4
=

15

4
(1.18)
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2 The Fundamental Theorem of Calculus

• Take derivatives of integrals using the FTC Part I

• Compute definite integrals using the FTC Part II

Example 2.1- derivatives of integrals

Differentiate the following functions

(a)

f(x) =

∫ x2

2
e−t

2
dt (2.1)

(b)

f(x) =

∫ sinx

cosx

√
1 + t2dt (2.2)

Recall that the FTC Part I gives us the differentiation rule

d

dx

∫ x

a
g(t)dt = g(x) (2.3)

(a) Let u = x2 and then use the chain rule:

df

dx
=
df

du

du

dx
(2.4)

=
d

du

(∫ u

2
e−t

2
dt

)
.2x (2.5)

= e−u
2
.2x from the FTC (2.6)

= 2xe−x
4

(2.7)

(b) We break the integral up into forms that permit the FTC. Useful identities are∫ b

a
f(t)dt =

∫ c

a
f(t)dt+

∫ b

c
f(t)dt (2.8)∫ b

a
f(t)dt = −

∫ a

b
f(t)dt. (2.9)
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We may therefore write

f(x) =

∫ sinx

cosx

√
1 + t2dt (2.10)

=

∫ 0

cosx

√
1 + t2dt+

∫ sinx

0

√
1 + t2dt we could have used any constant instead of 0 (2.11)

= −
∫ cosx

0

√
1 + t2dt+

∫ sinx

0

√
1 + t2dt (2.12)

= −
√

1 + cos2 x(− sinx) +
√

1 + sin2 x cosx using methods from (a) (2.13)

= sinx
√

1 + cos2 x+ cosx
√

1 + sin2 x (2.14)

Example 2.2 - definite integrals

Evaluate the following:

(a) ∫ 2

1
x3dx (2.15)

(b) ∫ x

π
2

cos t dt (2.16)

Recall that the FTC Part II tells us that if F (x) is the anti-derivative of f(x), then∫ b

a
f(t)dt = F (a)− F (b) (2.17)

(a) The antiderivative of x3 is 1
4x

4 so FTC II tells us∫ 2

1
x3dx =

1

4
x4
∣∣∣∣2
1

=
15

4
(2.18)

The FTC II saves us a lot of time cf. Example 1.(a).
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(b) The antiderivative of cos t is sin t and so∫ x

π
2

cos tdt = sin t

∣∣∣∣x
π
2

= sinx− 1 (2.19)

Note that this is consistent with FTC I if we were to differentiate both sides.
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3 Integration Techniques

• Recognise even and odd integrands to save time

• Integrate piecewise-defined functions

• Use a change of variables to simplify the integral

• Employ integration by parts when appropriate

Example 3.1 - odd / even / Heaviside integrands

Evaluate the following integrals

(a) ∫ 1

−1
(x4 + x2)dx (3.1)

(b) ∫ π
2

−π
2

xe−x
2
dx (3.2)

(c) ∫ 3

0

[
x2 +H(x− 2)(4− x2)

]
dx (3.3)

Recall that for any even function f , ∫ a

−a
f(x)dx = 2

∫ a

0
f(x)dx (3.4)

and for an odd function g, ∫ a

−a
g(x)dx = 0 (3.5)

for any value of a. You may wish to show this algebraically or via a sketch.
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(a) The integrand is even so we can save a bit of time using the above result:∫ 1

−1
(x4 + x2)dx = 2

∫ 1

0
(x4 + x2)dx (3.6)

= 2

(
1

5
x5 +

1

3
x3
∣∣∣∣1
0

)
(3.7)

= 2

(
1

5
+

1

3

)
(3.8)

=
16

15
(3.9)

(b) This integral has an odd integrand. Since the limits are symmetrical about zero, the integral must
be zero.

(c) For integrals involving piecewise-defined integrands, separate the integral up into the corresponding
pieces: ∫ 3

0

[
x2 +H(x− 2)(4− x2)

]
dx =

∫ 2

0
x2dx+

∫ 3

2
4 dx (3.10)

=
1

3
x3
∣∣∣∣2
0

+ 4x

∣∣∣∣3
2

(3.11)

=
8

3
+ 4 =

20

3
(3.12)



3 INTEGRATION TECHNIQUES 9

Example 3.2 - The Method of Substitution

Evaluate the following integrals

(a) ∫ (
1− 1

x

)
cos(x− lnx)dx (3.13)

(b) ∫ π
2

0
esin θ cos θ dθ (3.14)

(c) ∫ √3
0

x3
√

1 + x2dx (3.15)

Look for a simplifying substitution, ideally one whose derivative is contained in the integrand.

(a) Let u = x− lnx. Then du = (1− 1/x) dx and so∫ (
1− 1

x

)
cos(x− lnx) dx =

∫
cosu du (3.16)

= sinu+ C (3.17)

= sin(x− lnx) + C (3.18)

(b) Let u = sin θ. Then du = cos θ dθ. Don’t forget to convert the limits!

θ = 0⇒ u = 0 (3.19)

θ =
π

2
⇒ u = 1 (3.20)

The integral becomes ∫ π
2

0
esin θ cos θ dθ =

∫ 1

0
eudu (3.21)

= eu
∣∣1
0

(3.22)

= e− 1 (3.23)
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(c) The substitution is a bit less obvious here...simplify the square root with u = 1 + x2. The integral
becomes ∫ √3

0
x3
√

1 + x2dx =

∫ √3
0

x2
√

1 + x2 x dx (3.24)

=

∫ 4

1
(u− 1)u

1
2
du

2
(3.25)

=
1

2

∫ 4

1
(u

3
2 − u

1
2 )du (3.26)

=
1

2

(
2

5
u

5
2 − 2

3
u

3
2

) ∣∣∣∣4
1

(3.27)

=
1

2

(
2

5
.32− 2

3
.8− 2

5
+

2

3

)
(3.28)

=
58

15
(3.29)
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Example 3.3 - Integration by Parts

Evaluate the following integrals

(a) ∫
x cosxdx (3.30)

(b) ∫
x lnxdx (3.31)

(c) ∫ e

1
lnx dx (3.32)

Recall the relation we use for integration by parts:∫
udv = uv −

∫
vdu (3.33)

Hints:

- Make sure dv is something we know how to integrate

- Choose a u that simplifies upon differentiation.

(a) Let

u = x simplifies upon differentiation (3.34)
dv = cosx dx we know how to integrate (3.35)

Then

du = dx (3.36)
v = sinx (3.37)

Using (3.33), we have ∫
x cosxdx = x sinx−

∫
sinxdx (3.38)

= x sinx+ cosx+ C (3.39)
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(b)
∫
x lnxdx

Now lnx isn’t easy to integrate so we will set

u = lnx, dv = x dx (3.40)

Then
du =

1

x
dx, v =

1

2
x2. (3.41)

And so ∫
x lnx dx =

1

2
x2 lnx−

∫
1

2
x2.

1

x
dx (3.42)

=
1

2
x2 lnx− 1

2

∫
xdx (3.43)

=
1

2
x2 lnx− 1

4
x2 + C (3.44)

(c)
∫ e
1 lnx dx

IBP can also be useful in cases that don’t involve the explicit product of two functions. Let

u = lnx, dv = dx. (3.45)

Then
du =

1

x
dx, v = x. (3.46)

There are boundaries to this integral, so we just carry those through into the formula:∫ e

1
lnx dx = x lnx

∣∣e
0
−
∫ e

0
dx (3.47)

= e− (e− 1) (3.48)
= 1 (3.49)


