Examples 6 Differentials, L'Hopital's Rule, and Curve Sketching

November 7, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

[^0]
1 Differentials

- Use differentials to approximate values
- Manipulate differentials to give percentage error estimates

Example 1.1-Estimation

Use differentials to find estimates for the following values
(a) $\sqrt{51}$
(b) $\sin \left(\frac{\pi}{4}+0.1\right)$

(a) Using differentials

- We can easily evaluate $\sqrt{49}$ so we choose $x_{0}=49$ as our base point for the function $f(x)=\sqrt{x}$.
- Calculate the differential of f :

$$
\begin{align*}
d f & =f^{\prime}(x) d x \tag{1.1}\\
& =\frac{1}{2 \sqrt{x}} d x \tag{1.2}
\end{align*}
$$

- Now set $d x=2$ and $x=49$

$$
\begin{equation*}
d f=\frac{1}{2 \sqrt{49}} * 2=\frac{1}{7} \tag{1.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\Delta f \approx \frac{1}{7} \tag{1.4}
\end{equation*}
$$

- This is the change in f from the point $x_{0}=49$ so we have

$$
\begin{align*}
f(52) & =f(49)+\Delta f \tag{1.5}\\
& \approx 7+\frac{1}{7} \tag{1.6}\\
& =\frac{50}{7} \tag{1.7}
\end{align*}
$$

Using a taylor expansion (same methodology but more concise)

- The first order Taylor expansion gives

$$
\begin{align*}
f\left(x_{0}+\Delta x\right) & \approx f\left(x_{0}\right)+\Delta x f^{\prime}\left(x_{0}\right) \tag{1.8}\\
\Rightarrow f(51) & \approx f(49)+2 * f^{\prime}(49) \tag{1.9}\\
& =7+2 * \frac{1}{2 * 7}=\frac{50}{7} \tag{1.10}
\end{align*}
$$

(b) Using the Taylor expansion

$$
\begin{align*}
\sin \left(\frac{\pi}{4}+0.1\right) & \approx \sin \left(\frac{\pi}{4}\right)+0.1 \cos \left(\frac{\pi}{4}\right) \tag{1.11}\\
& =\frac{1}{\sqrt{2}}+0.1 \frac{1}{\sqrt{2}} \tag{1.12}\\
& =\frac{11}{10 \sqrt{2}} \tag{1.13}
\end{align*}
$$

A quick note: Where did that Taylor expansion (1.8) come from? Rearrange it to give

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}
$$

Approximation becomes equality as $\Delta x \rightarrow 0$ and of course this is the definition of the derivative. More on Taylor Series in Math 119.

Example 1.2-Percentage Error

A soccer ball manufacturer wishes to make a ball of volume V, allowing a maximum of a 3% percentage error. Estimate the maximum percentage error in the diameter of the ball required to achieve this.

The volume of a sphere with diameter l is given by $V=\frac{1}{6} \pi l^{3}$.

- Max \% error in V is 3% so

$$
\begin{equation*}
\left|\frac{d V}{V}\right|<0.03 \tag{1.14}
\end{equation*}
$$

- The differential of V is

$$
\begin{equation*}
d V=\frac{1}{2} \pi l^{2} d l . \tag{1.15}
\end{equation*}
$$

- Then

$$
\begin{equation*}
\frac{d V}{V}=\frac{\frac{1}{2} \pi l^{2} d l}{\frac{1}{6} \pi l^{3}}=3 \frac{d l}{l} \tag{1.16}
\end{equation*}
$$

- And so

$$
\begin{equation*}
\left|\frac{d l}{l}\right|=\frac{1}{3}\left|\frac{d V}{V}\right|<0.01 \tag{1.17}
\end{equation*}
$$

which means we require a percentage error in diameter less than 1%.
(Remember this is approximate - differentials provide approximations when dealing with finite changes)

2 L'Hopital's Rule

- Evaluate limits with indeterminate forms such as " $\frac{0}{0}$ ", $\frac{\infty}{\infty} ", " 0 . \infty ", ~ " 1^{\infty}$

Example 2.1-Forms " $\frac{0}{0}$ " $" \frac{\infty}{\infty}$ "

Evaluate the following limits using L'Hopital's Rule:
(a)

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x} \tag{2.1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}} \tag{2.2}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} \tag{2.3}
\end{equation*}
$$

(a) This has the indeterminate form " $0 / 0$ ".

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sin x}{x} \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{\cos x}{1}=1 \tag{2.4}
\end{equation*}
$$

(b) L'Hopital's rule can be applied multiple times if we continue to get indeterminate forms:

$$
\begin{align*}
\lim _{x \rightarrow 0} \frac{\tan x-x}{x^{3}} & \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{\sec ^{2} x-1}{3 x^{2}} \quad \text { form " } 0 / 0 \text { " } \tag{2.5}\\
& \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{2 \sec ^{2} x \tan x}{6 x} \quad \text { using }(\sec x)^{\prime}=\sec x \tan x \tag{2.6}
\end{align*}
$$

Now before we dive into another l'Hopital, it saves time breaking the limits up into products:

$$
\begin{align*}
& =\frac{1}{3}\left(\lim _{x \rightarrow 0} \sec ^{2} x\right)\left(\lim _{x \rightarrow 0} \frac{\tan x}{x}\right) \quad \text { second bracket " } 0 / 0 \text { " } \tag{2.7}\\
& \stackrel{H}{=} \frac{1}{3} \lim _{x \rightarrow 0} \frac{\sec ^{2} x}{1} \tag{2.8}\\
& =\frac{1}{3} \tag{2.9}
\end{align*}
$$

(c) This has the indeterminate form " ∞ / ∞ ":

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} \stackrel{H}{=} \lim _{x \rightarrow \infty} \frac{1 / x}{1}=0 \tag{2.10}
\end{equation*}
$$

Loosely speaking, x goes to infinity faster than $\ln x$.

Example 2.2-Forms " $0 . \infty$ ", " 1^{∞} "
Using L'Hopital's Rule, evaluate the following limits:
(a)

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} x e^{1 / x} \tag{2.11}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow 0}(1+x)^{1 / x} \tag{2.12}
\end{equation*}
$$

(a) - This has the indeterminate form " $0 * \infty^{\prime}$ ". Note that if the limit was from below $\left(x \rightarrow 0^{-}\right)$we would have the form " $0 * 0$ " which you can automatically say is 0 .

- We can put these types of limit into the form " $0 / 0$ " or " ∞ / ∞ ", whichever makes life easier:

$$
\begin{align*}
\lim _{x \rightarrow 0^{+}} x e^{1 / x} & =\lim _{x \rightarrow 0^{+}} \frac{e^{1 / x}}{x^{-1}} \quad \text { this is now in the form } " \infty / \infty " \tag{2.13}\\
& =\lim _{x \rightarrow 0^{+}} \frac{-\frac{1}{x^{2}} 1^{1 / x}}{-\frac{1}{x^{2}}} \tag{2.14}\\
& \xlongequal{H} \lim _{x \rightarrow 0^{+}} e^{1 / x} \tag{2.15}\\
& =\infty \tag{2.16}
\end{align*}
$$

- If you like substitutions, we could have simplified the exponent using $u=\frac{1}{x}$ then

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} x e^{1 / x}=\lim _{u \rightarrow \infty} \frac{e^{u}}{u} \stackrel{H}{=} \lim _{u \rightarrow \infty} \frac{e^{u}}{1}=\infty \tag{2.17}
\end{equation*}
$$

(b) - This has the indeterminate form " 11^{∞} ", should this be $1, \infty$, neither??

- We proceed by taking logarithms : let $y=(1+x)^{\frac{1}{x}}$. Then

$$
\begin{equation*}
\lim _{x \rightarrow 0} \ln y=\lim _{x \rightarrow 0} \frac{1}{x} \ln (1+x) \stackrel{H}{=} \lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{1}=1 \tag{2.18}
\end{equation*}
$$

So the limit of its logarithm wasn't too bad. The trick now is, since $\ln y$ is continuous everywhere,

$$
\begin{equation*}
\ln \left(\lim _{x \rightarrow 0} y\right)=\lim _{x \rightarrow 0} \ln y=1 . \tag{2.19}
\end{equation*}
$$

And so

$$
\begin{equation*}
\lim _{x \rightarrow 0}(1+x)^{1 / x}=e . \tag{2.20}
\end{equation*}
$$

...nice

3 Curve sketching and optimisation techniques

- Identify critical points of functions and their properties (local max/min/neither)
- Locate absolute extrema using the closed interval method
- Sketch curves with the help of derivative tests

Example 3.1-Finding Absolute Extrema - (Closed Interval Method)

Find the absolute maximum and absolute minimum values of the following functions on their respective domains:
(a)

$$
\begin{equation*}
f(x)=\frac{\ln x}{x}, \quad x \in\left[1, e^{2}\right] \tag{3.1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
f(x)=|\cos x|, \quad x \in\left[0, \frac{5 \pi}{4}\right] \tag{3.2}
\end{equation*}
$$

(a) - Locate the critical points:

$$
\begin{equation*}
f^{\prime}(x)=\frac{1-\ln x}{x^{2}} \tag{3.3}
\end{equation*}
$$

which is zero at $x=e$ and undefined at $x=0 . f(x)$ is also undefined at $x=0$ so only $x=e$ is a critical point.

- Compare values for f at critical points and edge points:

$$
\begin{equation*}
f(1)=0, \quad f(e)=e^{-1}, \quad f\left(e^{2}\right)=2 e^{-2} \tag{3.4}
\end{equation*}
$$

And so the absolute min is $f=0$ and the absolute max is $f=e^{-1}$.
To convince yourself that $2 e^{-2}<e^{-1}$, note that $e>2 \Rightarrow 2 e^{-1}<1 \Rightarrow 2 e^{-2}<e^{-1}$.
(b) If a sketch is quick - draw it for intuition

Locate the critical points:

Before differentiating functions with absolute value signs, write them in piecewise form!

$$
f(x)= \begin{cases}\cos x & x \in\left[0, \frac{\pi}{2}\right] \tag{3.5}\\ -\cos x & x \in\left[\pi / 2, \frac{5 \pi}{4}\right]\end{cases}
$$

Then

$$
f^{\prime}(x)= \begin{cases}-\sin x & x \in\left(0, \frac{\pi}{2}\right) \tag{3.6}\\ \sin x & x \in\left(\frac{\pi}{2}, \frac{5 \pi}{4}\right)\end{cases}
$$

We have $f^{\prime}(x)=0$ at $x=\pi$ and f^{\prime} is probably not defined at $x=\pi / 2$.
Check:

$$
\begin{align*}
\lim _{h \rightarrow 0^{-}} \frac{f\left(\frac{\pi}{2}+h\right)-f\left(\frac{\pi}{2}\right)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}\right)}{h} \tag{3.7}\\
& =\lim _{h \rightarrow 0^{-}} \frac{\cos \left(\frac{\pi}{2}\right) \cos h-\sin \left(\frac{\pi}{2}\right) \sin h}{h} \tag{3.8}\\
& =-\lim _{h \rightarrow 0^{-}} \frac{\sin h}{h}=-1 \tag{3.9}
\end{align*}
$$

Similarly we can show the right-sided limit is +1 .

So the critical points are $x=\frac{\pi}{2}$ and $x=\pi$.

Compare values of f at critical points and end points:

$$
\begin{equation*}
f(0)=1, \quad f(\pi / 2)=0, \quad f(\pi)=1, \quad f(5 \pi / 4)=1 / \sqrt{2} \tag{3.10}
\end{equation*}
$$

And so $f_{\min }=0, f_{\max }=1$.

Example 3.2-Curve sketching

Sketch the following functions, illustrating behaviour at critical points and points of inflection.
(a)

$$
\begin{equation*}
f(x)=-2 x^{3}+9 x^{2}-12 x+6 \tag{3.11}
\end{equation*}
$$

(b)

$$
\begin{equation*}
f(x)=x^{2} \ln x, \quad x \in(0, \infty) \tag{3.12}
\end{equation*}
$$

(a) - Find the critical points:

$$
\begin{align*}
f^{\prime}(x) & =-6 x^{2}+18 x-12 \tag{3.13}\\
& =-6(x-1)(x-2) \tag{3.14}
\end{align*}
$$

which is zero at $x=1$ and $x=2$. They are the critical points.

- Evaluate the behaviour at the critical points:

Using the First Derivative Test
Evaluate the sign of $f^{\prime}(x)$ either side of the critical points:

$$
\begin{array}{ll}
f^{\prime}(x)<0 & \text { for } x<1 \\
f^{\prime}(x)>0 & \text { for } 1<x<2 \\
f^{\prime}(x)<0 & \text { for } x>2 \tag{3.17}
\end{array}
$$

Therefore $x=1$ is a local minimum, and $x=2$ is a local maximum.
Or using the Second Derivative Test
Evaluate the sign of $f^{\prime \prime}(x)$ at the critical points:

$$
\begin{align*}
f^{\prime \prime}(x) & =-12 x+18 \tag{3.18}\\
f^{\prime \prime}(1) & =6>0 \tag{3.19}\\
f^{\prime \prime}(2) & =-6<0 \tag{3.20}
\end{align*}
$$

in agreement with the first test.

- Inflection points:

There is an inflection point where

$$
\begin{align*}
& f^{\prime \prime}(x)=0 \tag{3.21}\\
& \Rightarrow \quad-12 x+18=0 \tag{3.22}\\
& \Rightarrow \quad x=3 / 2 \tag{3.23}
\end{align*}
$$

- Make a sketch

Also consider behaviour as $x \rightarrow \pm \infty$ to help.

(b) $f(x)=x^{2} \ln x, \quad x \in(0, \infty)$

Investigate behaviour towards interval bounds:

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} x^{2} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}} \stackrel{H}{=} \lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}=0 \tag{3.24}
\end{equation*}
$$

Note that for very small values of $x, f(x)$ is negative, so it tends to zero from below.

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x^{2} \ln x=\infty \tag{3.25}
\end{equation*}
$$

Find critical points:

$$
\begin{equation*}
f^{\prime}(x)=2 x \ln x+x^{2}(1 / x)=x(1+2 \ln x) \tag{3.26}
\end{equation*}
$$

which is zero at $x=0$ (discard since not in the domain of f), and at $x=e^{-1 / 2}$.
So there is a single critical point at $x=e^{-1 / 2}$.

Investigate nature of critical points:

Using the First Derivative Test
Note that $f(x)<0$ for $x \in\left(0, e^{-1 / 2}\right)$ and $f^{\prime}(x)>0$ for $x \in\left(e^{-1 / 2}, \infty\right)$. Therefore $x=e^{-1 / 2}$ is a local min.

Or Using the Second Derivative Test
The second derivative is

$$
\begin{equation*}
f^{\prime \prime}(x)=(1+2 \ln x)+x(2 / x)=3+2 \ln x \tag{3.27}
\end{equation*}
$$

and so

$$
\begin{equation*}
f^{\prime \prime}\left(e^{-1 / 2}\right)=3+2 \ln \left(e^{-1 / 2}\right)=3+2(-1 / 2)=2 \tag{3.28}
\end{equation*}
$$

which is >0 as expected, representing a local min.

Inflection Points:

Inflection points occur at $f^{\prime \prime}(x)=0$ i.e

$$
\begin{align*}
& 3+2 \ln x=0 \tag{3.29}\\
\Rightarrow \quad & x=e^{-3 / 2} \tag{3.30}
\end{align*}
$$

Sketch:

Note that $\mathrm{f}(1)=0$.

[^0]: * Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

