
Examples 6
Differentials, L’Hopital’s Rule, and Curve Sketching

November 7, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.∗

∗Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca
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1 Differentials

• Use differentials to approximate values

• Manipulate differentials to give percentage error estimates

Example 1.1 - Estimation

Use differentials to find estimates for the following values

(a)
√

51

(b) sin
(
π
4 + 0.1

)

(a) Using differentials

- We can easily evaluate
√

49 so we choose x0 = 49 as our base point for the function f(x) =
√
x.

- Calculate the differential of f :

df = f ′(x)dx (1.1)

=
1

2
√
x
dx (1.2)

- Now set dx = 2 and x = 49

df =
1

2
√

49
∗ 2 =

1

7
(1.3)

and so
∆f ≈ 1

7
(1.4)

- This is the change in f from the point x0 = 49 so we have

f(52) = f(49) + ∆f (1.5)

≈ 7 +
1

7
(1.6)

=
50

7
(1.7)

Using a taylor expansion (same methodology but more concise)

- The first order Taylor expansion gives

f(x0 + ∆x) ≈ f(x0) + ∆xf ′(x0) (1.8)
⇒ f(51) ≈ f(49) + 2 ∗ f ′(49) (1.9)

= 7 + 2 ∗ 1

2 ∗ 7
=

50

7
(1.10)
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(b) Using the Taylor expansion

sin
(π

4
+ 0.1

)
≈ sin

(π
4

)
+ 0.1 cos

(π
4

)
(1.11)

=
1√
2

+ 0.1
1√
2

(1.12)

=
11

10
√

2
(1.13)

A quick note: Where did that Taylor expansion (1.8) come from? Rearrange it to give

f ′(x0) ≈
f(x0 + ∆x)− f(x0)

∆x

Approximation becomes equality as ∆x→ 0 and of course this is the definition of the derivative. More on
Taylor Series in Math 119.

Example 1.2 - Percentage Error

A soccer ball manufacturer wishes to make a ball of volume V , allowing a maximum of a 3% percentage
error. Estimate the maximum percentage error in the diameter of the ball required to achieve this.

The volume of a sphere with diameter l is given by V = 1
6πl

3.

- Max % error in V is 3% so ∣∣∣∣dVV
∣∣∣∣ < 0.03. (1.14)

- The differential of V is
dV =

1

2
πl2dl. (1.15)

- Then
dV

V
=

1
2πl

2dl
1
6πl

3
= 3

dl

l
. (1.16)

- And so ∣∣∣∣dll
∣∣∣∣ =

1

3

∣∣∣∣dVV
∣∣∣∣ < 0.01, (1.17)

which means we require a percentage error in diameter less than 1%.

(Remember this is approximate - differentials provide approximations when dealing with finite changes)
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2 L’Hopital’s Rule

• Evaluate limits with indeterminate forms such as ”0
0”, ”∞∞”, "0.∞", "1∞"

Example 2.1 - Forms "0
0
" "∞∞"

Evaluate the following limits using L’Hopital’s Rule:

(a)

lim
x→0

sinx

x
(2.1)

(b)

lim
x→0

tanx− x
x3

(2.2)

(c)

lim
x→∞

lnx

x
(2.3)

(a) This has the indeterminate form ”0/0”.

lim
x→0

sinx

x

H
= lim

x→0

cosx

1
= 1 (2.4)

(b) L’Hopital’s rule can be applied multiple times if we continue to get indeterminate forms:

lim
x→0

tanx− x
x3

H
= lim

x→0

sec2 x− 1

3x2
form "0/0" (2.5)

H
= lim

x→0

2 sec2 x tanx

6x
using (secx)′ = secx tanx (2.6)

Now before we dive into another l’Hopital, it saves time breaking the limits up into products:

=
1

3

(
lim
x→0

sec2 x
)(

lim
x→0

tanx

x

)
second bracket "0/0" (2.7)

H
=

1

3
lim
x→0

sec2 x

1
(2.8)

=
1

3
(2.9)
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(c) This has the indeterminate form "∞/∞":

lim
x→∞

lnx

x

H
= lim

x→∞

1/x

1
= 0 (2.10)

Loosely speaking, x goes to infinity faster than lnx.

Example 2.2 - Forms "0.∞", "1∞"

Using L’Hopital’s Rule, evaluate the following limits:

(a)
lim
x→0+

xe1/x (2.11)

(b)
lim
x→0

(1 + x)1/x (2.12)

(a) - This has the indeterminate form "0 ∗ ∞". Note that if the limit was from below (x → 0−) we
would have the form ”0 ∗ 0” which you can automatically say is 0.

- We can put these types of limit into the form "0/0" or "∞/∞", whichever makes life easier:

lim
x→0+

xe1/x = lim
x→0+

e1/x

x−1
this is now in the form "∞/∞" (2.13)

= lim
x→0+

− 1
x2
e1/x

− 1
x2

(2.14)

H
= lim

x→0+
e1/x (2.15)

=∞ (2.16)

- If you like substitutions, we could have simplified the exponent using u = 1
x then

lim
x→0+

xe1/x = lim
u→∞

eu

u

H
= lim

u→∞

eu

1
=∞. (2.17)
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(b) - This has the indeterminate form "1∞", should this be 1, ∞, neither??

- We proceed by taking logarithms : let y = (1 + x)
1
x . Then

lim
x→0

ln y = lim
x→0

1

x
ln(1 + x)

H
= lim

x→0

1
1+x

1
= 1 (2.18)

So the limit of its logarithm wasn’t too bad. The trick now is, since ln y is continuous everywhere,

ln
(

lim
x→0

y
)

= lim
x→0

ln y = 1. (2.19)

And so
lim
x→0

(1 + x)1/x = e. (2.20)

...nice
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3 Curve sketching and optimisation techniques

• Identify critical points of functions and their properties (local max/min/neither)

• Locate absolute extrema using the closed interval method

• Sketch curves with the help of derivative tests

Example 3.1 - Finding Absolute Extrema - (Closed Interval Method)

Find the absolute maximum and absolute minimum values of the following functions on their respective
domains:

(a)

f(x) =
lnx

x
, x ∈ [1, e2] (3.1)

(b)
f(x) = | cosx|, x ∈ [0, 5π4 ] (3.2)

(a) - Locate the critical points:

f ′(x) =
1− lnx

x2
(3.3)

which is zero at x = e and undefined at x = 0. f(x) is also undefined at x = 0 so only x = e is
a critical point.

- Compare values for f at critical points and edge points:

f(1) = 0, f(e) = e−1, f(e2) = 2e−2 (3.4)

And so the absolute min is f = 0 and the absolute max is f = e−1.

To convince yourself that 2e−2 < e−1, note that e > 2⇒ 2e−1 < 1⇒ 2e−2 < e−1.
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(b) If a sketch is quick - draw it for intuition
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Locate the critical points:

Before differentiating functions with absolute value signs, write them in piecewise form!

f(x) =

{
cosx x ∈ [0, π2 ]

− cosx x ∈ [π/2, 5π4 ]
(3.5)

Then

f ′(x) =

{
− sinx x ∈ (0, π2 )

sinx x ∈ (π2 ,
5π
4 )

(3.6)

We have f ′(x) = 0 at x = π and f ′ is probably not defined at x = π/2.

Check:

lim
h→0−

f(π2 + h)− f(π2 )

h
= lim

h→0−

cos(π2 + h)− cos(π2 )

h
(3.7)

= lim
h→0−

cos(π2 ) cosh− sin(π2 ) sinh

h
(3.8)

= − lim
h→0−

sinh

h
= −1 (3.9)

Similarly we can show the right-sided limit is +1.

So the critical points are x = π
2 and x = π.

Compare values of f at critical points and end points:

f(0) = 1, f(π/2) = 0, f(π) = 1, f(5π/4) = 1/
√

2 (3.10)

And so fmin = 0, fmax = 1.
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Example 3.2 - Curve sketching

Sketch the following functions, illustrating behaviour at critical points and points of inflection.

(a)
f(x) = −2x3 + 9x2 − 12x+ 6 (3.11)

(b)
f(x) = x2 lnx, x ∈ (0,∞) (3.12)

(a) - Find the critical points:

f ′(x) = −6x2 + 18x− 12 (3.13)
= −6(x− 1)(x− 2) (3.14)

which is zero at x = 1 and x = 2. They are the critical points.

- Evaluate the behaviour at the critical points:

Using the First Derivative Test
Evaluate the sign of f ′(x) either side of the critical points:

f ′(x) < 0 for x < 1 (3.15)
f ′(x) > 0 for 1 < x < 2 (3.16)
f ′(x) < 0 for x > 2 (3.17)

Therefore x = 1 is a local minimum, and x = 2 is a local maximum.

Or using the Second Derivative Test
Evaluate the sign of f ′′(x) at the critical points:

f ′′(x) = −12x+ 18 (3.18)
f ′′(1) = 6 > 0 (3.19)
f ′′(2) = −6 < 0 (3.20)

in agreement with the first test.
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- Inflection points:
There is an inflection point where

f ′′(x) = 0 (3.21)
⇒ −12x+ 18 = 0 (3.22)
⇒ x = 3/2 (3.23)

- Make a sketch

Also consider behaviour as x→ ±∞ to help.
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(b) f(x) = x2 lnx, x ∈ (0,∞)

Investigate behaviour towards interval bounds:

lim
x→0+

x2 lnx = lim
x→0+

lnx

x−2
H
= lim

x→0+

x−1

−2x−3
= lim

x→0+

x2

−2
= 0 (3.24)

Note that for very small values of x, f(x) is negative, so it tends to zero from below.

lim
x→∞

x2 lnx =∞ (3.25)

Find critical points:
f ′(x) = 2x lnx+ x2(1/x) = x(1 + 2 lnx) (3.26)

which is zero at x = 0 (discard since not in the domain of f), and at x = e−1/2.

So there is a single critical point at x = e−1/2.

Investigate nature of critical points:

Using the First Derivative Test

Note that f(x) < 0 for x ∈ (0, e−1/2) and f ′(x) > 0 for x ∈ (e−1/2,∞). Therefore x = e−1/2 is a local
min.

Or Using the Second Derivative Test

The second derivative is
f ′′(x) = (1 + 2 lnx) + x(2/x) = 3 + 2 lnx (3.27)

and so
f ′′(e−1/2) = 3 + 2 ln(e−1/2) = 3 + 2(−1/2) = 2 (3.28)

which is > 0 as expected, representing a local min.

Inflection Points:
Inflection points occur at f ′′(x) = 0 i.e

3 + 2 lnx = 0 (3.29)

⇒ x = e−3/2 (3.30)
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Sketch:

Note that f(1) = 0.
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