
Examples 5
Differential Calculus

October 24, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.∗

1 Differential Calculus

• Find derivatives from first principles

• Determine differentiability of a function

• Know when to use, and how to implement implicit differentiation

• Compute derivatives of inverse functions

• Apply logarithmic differentiation when convenient

∗Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca
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Example 1.1 - Derivatives from first principles

Using the definition of a derivative, compute f ′(x) for the following functions:

(a) f(x) = x2

(b) f(x) =
√
x2 + 1

(c) f(x) = 1√
x

Recall that the derivative of f at a point x is given by

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

(1.1)

assuming the limit exists. If you prefer, you may also use

f ′(x) = lim
y→x

f(y)− f(x)
y − x

. (1.2)

(a) Using the definition as given in (1.1) we have

f(x) = x2 (1.3)

⇒ f ′(x) = lim
h→0

(x+ h)2 − x2

h
(1.4)

= lim
h→0

2xh+ h2

h
(1.5)

= lim
h→0

(2x+ h) (1.6)

= 2x (1.7)

as of course we all knew already. We’ll use the other method too, just this once...

f ′(x) = lim
y→x

y2 − x2

y − x
(1.8)

= lim
y→x

(y + x)(y − x)
y − x

(1.9)

= lim
y→x

y + x (1.10)

= 2x. (1.11)

In hindsight I would recommend the first definition for these exercises - having a simple denominator
makes life easier.
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(b) From (1.1) we have

f(x) =
√
x2 + 1 (1.12)

⇒ f ′(x) = lim
h→0

√
(x+ h)2 + 1−

√
x2 + 1

h
(1.13)

= lim
h→0

1

h

(x+ h)2 + 1− (x2 + 1)√
(x+ h)2 + 1 +

√
x2 + 1

multiply by conjugate (1.14)

= lim
h→0

1

h

2xh+ h2√
(x+ h)2 + 1 +

√
x2 + 1

(1.15)

= lim
h→0

2x+ h√
(x+ h)2 + 1 +

√
x2 + 1

(1.16)

=
x√

x2 + 1
(1.17)

(c) From (1.1) we have

f(x) =
1√
x

(1.18)

⇒ f ′(x) = lim
h→0

1√
x+h
− 1√

x

h
(1.19)

= lim
h→0

1

h

√
x−
√
x+ h

√
x
√
x+ h

(1.20)

= lim
h→0

1

h

x− (x+ h)
√
x
√
x+ h(

√
x+
√
x+ h)

multiply by conjugate (1.21)

= lim
h→0

−1
√
x
√
x+ h(

√
x+
√
x+ h)

(1.22)

= − 1

2x3/2
(1.23)
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Example 1.2 - Differentiability of functions

Determine at which points the following functions are differentiable.

(a) f(x) = |x− 2|

(b) f(x) = x+H(x− 1)

(c) f(x) = 4x+ (1− 4x+ ln 4x)H(x− 1/4), may use limh→0
ln(h+1)

h = 1

Recall that f(x) if differentiable at the point x0 if the limit

lim
h→0

f(x0 + h)− f(x0)
h

(1.24)

exists. I.e if the derivative at the point x0 is defined.

(a) First note that

f(x) = |x− 2| =

{
2− x x < 2

x− 2 x ≥ 2
(1.25)

We can see immediately that x is differentiable on the open intervals (−∞, 2) and (2,∞) : we can
calculate the derivatives on these intervals as −1 and 1 respectively.

At x = 2 we must check to see if the limit defining the derivative exists. We have

lim
h→0−

f(2 + h)− f(2)
h

= lim
h→0−

2− (2 + h)− 0

h
= −1. (1.26)

However,

lim
h→0+

f(2 + h)− f(2)
h

= lim
h→0+

2 + h− 2− 0

h
= 1. (1.27)

Since the this limit is not defined at x = 2, f is not differentiable there. We conclude f is only
differentiable on the interval (−∞,2) ∪ (2,∞)

Not all continuous functions are differentiable!
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(b) Write

f(x) = x+H(x− 1) =

{
x x < 1

x+ 1 x ≥ 1
(1.28)

Sketch:

-� -� � � � �
�

-�

�

�

�
�(�)

This function is differentiable for x ∈ (−∞, 1)∪(1,∞) and has derivative 1. It has the same derivative
either side of x = 1...does that mean it’s differentiable at x = 1? Around this point we have

lim
h→0+

f(1 + h)− f(1)
h

= lim
h→0+

1 + h+ 1− 2

h
= 1 (1.29)

and
lim

h→0−

f(1 + h)− f(1)
h

= lim
h→0−

1 + h− 2

h
= lim

h→0−
1− 1

h
=∞ (1.30)

and so the limit is not defined. In fact, one can prove

f differentiable at x0 ⇒ f continuous at x0 (1.31)

and thus its contrapositive

f discontinuous at x0 ⇒ f NOT differentiable at x0. (1.32)
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(c) Write

f(x) =

{
4x x < 1/4

1 + ln(4x) x ≥ 1/4
(1.33)

On (−∞, 1/4) we have f ′(x) = 4

On (1/4,∞) we have f ′(x) = 1
x

We see that f is continuous at x = 1
4 so it may be differentiable.

Check limits:
lim

h→0−

f(1/4 + h)− f(1/4)
h

= lim
h→0−

1 + 4h− 1

h
= 4, (1.34)

lim
h→0+

f(1/4 + h)− f(1/4)
h

= lim
h→0+

1 + ln(1 + 4h)− 1

h
(1.35)

= lim
h→0+

ln(1 + 4h)

h
(1.36)

= 4 lim
u→0+

ln(1 + u)

u
setting u = 4h (1.37)

= 4 (1.38)

This function is therefore differentiable everywhere.
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Example 1.3 - Implicit Differentiation

(a) Find y’ for the following relations. Answers may be left in terms of x and y.

(i) y2 + x2 = 1

(ii) sin(y3 − xy) = cos(x2 − 3)

(b) Find the tangent line to the curve
exy − 2 = 0 (1.39)

at the point (x, y) = (1, ln 2) using implicit differentiation. Check your answer by rearranging for y.

(a)

(i) This is of course the unit circle. Dif-
ferentiating w.r.t. x we have

x2 + y2 = 1 (1.40)
⇒ 2x+ 2yy′ = 0 (1.41)

⇒ y′ = −x
y

(1.42)

The derivative is not defined at x =
±1 (y = 0) as expected.
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(ii) Messy expressions involving x and y like this should be differentiated implicitly:

sin(y3 − xy) = cos(x2 − 3) (1.43)

⇒ cos(y3 − xy)
(
3y2y′ − (y + xy′)

)
= − sin(x2 − 3)2x using chain and product rule (1.44)

⇒ y′(3y2 − x)− y = −2x sin(x2 − 3)

cos(y3 − xy)
(1.45)

⇒ y′ =
1

3y2 − x

(
y − 2x sin(x2 − 3)

cos(y3 − xy)

)
(1.46)

(b) Differentiating implicitly we have

exy − 2 = 0 (1.47)
⇒ exy(y + xy′) = 0 (1.48)

⇒ y′ = −y
x

(1.49)

At (x0, y0) = (1, ln 2) we have y′ = − ln 2. The straight line going through the point (x0, y0) with
gradient m is

y − y0 = m(x− x0) (1.50)

And so the equation of the tangent line is

y − ln 2 = − ln 2(x− 1) (1.51)
⇒ y = ln 2(−x+ 2) (1.52)

For this simpler case, we could have rearranged (1.48) to get y = (ln 2)/x and differentiated normally
to get the same result.
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Example 1.4 - Derivatives of inverse functions

Find the derivative of the following functions

(a) f(x) = cos−1(x)

(b) f(x) = sinh−1(x)

In part (b) you may use results

cosh2(x)− sinh2(x) = 1,
d

dx
sinh(x) = cosh(x), cosh(x) > 0 for x ∈ R. (1.53)

(a) Set y = cos−1(x), so y ∈ [0, π]. Then

x = cos y (1.54)

⇒ dx

dy
= − sin y (1.55)

⇒ dy

dx
= − 1

sin y
using

dy

dx
=

1

dx/dy
(1.56)

We would like the derivative in terms of x since y is something we introduced. Since y ∈ [0, π],
sin y > 0 and so we may use

sin y =
√

1− cos2 y (1.57)

=
√

1− x2. (1.58)

Then
d

dx
cos−1(x) = − 1√

1− x2
(1.59)

(b) Set y = sinh−1(x). Then

x = sinh(y) (1.60)

⇒ dx

dy
= cosh(y) =

√
1 + sinh2(y) =

√
1 + x2 (1.61)

⇒ dy

dx
=

1√
1 + x2

(1.62)

where the positive root was taken in (1.61) since cosh(y) > 0.
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Example 1.5 - Logarithmic differentiation

For derivatives of functions involving the product of many terms raised to powers, logarithmic differentiation
provides us with a shortcut. Find the derivative of the following functions:

(a) f(x) = (x+1)3/2 sin2(x)
x−1

(b) f(x) = xx

(c) f(x) = xx
x (bonus q if time)

(a) Take the natural logarithm of both sides to break the product up in to a sum...

f(x) =
(x+ 1)3/2 sin2(x)

x− 1
(1.63)

⇒ ln f(x) =
3

2
ln(x+ 1) + 2 ln(sinx)− ln(x− 1) (1.64)

Differentiating both sides with respect to x gives

f ′(x)

f(x)
=

3

2(x+ 1)
+

2 cosx

sinx
− 1

x− 1
(1.65)

⇒ f ′(x) =
(x+ 1)3/2 sin2(x)

x− 1

(
3

2(x+ 1)
+

2 cosx

sinx
− 1

x− 1

)
(1.66)

(b) By the same procedure

f(x) = xx (1.67)
⇒ ln f(x) = x lnx (1.68)

⇒ f ′(x)

f(x)
= 1 + lnx (1.69)

⇒ f ′(x) = xx(1 + lnx) (1.70)

(c) And now....

f(x) = xx
x

(1.71)
⇒ ln f(x) = xx lnx (1.72)

⇒ f ′(x)

f(x)
= (xx)′ lnx+ xx(lnx)′ = xx(1 + lnx) lnx+ xx−1 (1.73)

⇒ f ′(x) = xx
x (
xx(1 + lnx) lnx+ xx−1

)
(1.74)


