
Examples 4:
Limits and Continuity

October 10, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning
objectives are listed under each section.∗

1 Limits

• Solve limit problems using standard limit rules.

• Solve limit problems using the definition of a limit

• Practise applying the Squeeze Theorem

• Investigate existence of limits for piecewise functions

∗Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca
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Example 1.1 - true / false statements

Warm up with the following true / false statements

(a) If f is continuous at a,
lim
x→a

f(x) = f(a) (1.1)

(b) The limit

lim
n→∞

1

np
= 0 (1.2)

for any p ∈ R.

(c) The limit

lim
x→∞

(
sin2(

√
x) + cos2(

√
x)

)
(1.3)

does not exist.

(d) Suppose

g(x), h(x)→ 5 as x→∞ (1.4)
and g(x) ≤ f(x) ≤ h(x) (1.5)

Then
lim
x→∞

f(x) = 5 (1.6)

(a) True. This is very useful, since it tells us that when evaluating the limit of a function at a point where
it is continuous, we may just plug the value in. For example

lim
x→2

x2 + 3

x− 1
=

4 + 3

2− 1
= 7 (1.7)

(b) False. This limit is only satisfied for p > 0. Note that

lim
n→∞

1

np
=


0 p > 0

1 p = 0

∞ p < 0

(1.8)

(c) False. Since
sin2(f(x)) + cos2(f(x)) = 1 (1.9)

for any function f(x). Any limit of a constant is just itself, so in this case the limit is 1.

(d) True. This is an example of the Squeeze Theorem.
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Example 1.2 - Limits with an "indeterminate form"

Evaluate the following limits

(a)

lim
x→3

x2 − 2x− 3

x− 3
(1.10)

(b)
lim
x→∞

√
x2 + 2x− x (1.11)

(a) Upon substituting 3 into the expression we see this limit has the indeterminate form ”0/0”. Rewriting
the function, we have

x2 − 2x− 3

x− 3
=

(x− 3)(x+ 1)

x− 3
(1.12)

= x+ 1 provided that x 6= 3 (1.13)

Note in taking the limit we get arbitrarily close to x = 3 but never actually attain it, hence we may
cancel the factors of (x− 3). Finally,

lim
x→3

x+ 1 = 4 (1.14)

(b) This has the indeterminate form "∞−∞". We get around this by converting the expression into a
ratio: √

x2 + 2x− x =
(
√
x2 + 2x− x)(

√
x2 + 2x+ x)√

x2 + 2x+ x
(1.15)

=
2x√

x2 + 2x+ x
multiply out numerator (1.16)

=
2√

1 + 2
x + 1

divide by highest power (1.17)

Now the limit is fairly simple

lim
x→∞

2√
1 + 2

x + 1
=

2√
1 + 1

= 1 (1.18)
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Example 1.3 - Application of the Squeeze Theorem

Evaluate the following limits

(a)
lim
x→∞

e−0.1x sinx (1.19)

(b)
lim
x→0

x2ecos(
1
x
) (1.20)

(a) We use the fact that sinx is bounded:

−1 ≤ sinx ≤ 1 (1.21)
⇒ −e−0.1x ≤ e−0.1x sinx ≤ e−0.1x since e−0.1x > 0 (1.22)

Now
lim
x→∞

−e−0.1x = lim
x→∞

e−0.1x = 0 (1.23)

and so by the Squeeze Theorem we must have

lim
x→∞

e−0.1x sinx = 0 (1.24)

(This represents an oscillation with exponentially decaying amplitude)

e-0.1 xsinx

e-0.1 x

-e-0.1 x
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x
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-0.5

0.5

1.0
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(b) Now use the fact that cos(1/x) is bounded:

−1 ≤ cos(1/x) ≤ 1 (1.25)

⇒ e−1 ≤ ecos(
1
x
) ≤ e (since ex is an increasing function we may do this) (1.26)

⇒ x2e−1 ≤ x2ecos(
1
x
) ≤ x2e (1.27)

The outside limits are
lim
x→0

x2e−1 = lim
x→0

x2e = 0 (1.28)

and so by the Squeeze Theorem,
lim
x→0

x2ecos(
1
x
) = 0 (1.29)
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Example 1.4 - Limits from first principles

Prove the following, using the definition of a limit

(a)

lim
n→∞

n2 + 1

n2 − 1
= 1 (1.30)

(b)
lim
x→2

(3x− 1) = 5 (1.31)

(a) We need to show that for any ε > 0, we can find an N such that

n > N ⇒
∣∣∣∣n2 + 1

n2 − 1
− 1

∣∣∣∣ < ε. (1.32)

Investigating the condition further we see that we require∣∣∣∣n2 + 1− (n2 − 1)

n2 − 1

∣∣∣∣ < ε (1.33)

⇒
∣∣∣∣ 2

n2 − 1

∣∣∣∣ < ε (1.34)

Since we are interested in the limit as n → ∞ it is reasonable to assume that n > 1. Thus we may
drop the absolute value signs which gives

n2 − 1 >
2

ε
(1.35)

⇒ n >

√
1 +

2

ε
taking the positive root since n > 1 (1.36)

Now set N =
√
1 + 2/ε meaning that for n > N we have∣∣∣∣n2 + 1

n2 − 1
− 1

∣∣∣∣ < ε (1.37)

proving the assumed limit of 1 is correct.
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(b) We must show that for any ε > 0 we can find a δ such that

|x− 2| < δ ⇒ |(3x− 1)− 5| < ε. (1.38)

Investigating the condition further, see that require

|3x− 6| < ε (1.39)
⇒ |x− 2| < ε/3 (1.40)

So if we set δ = ε/3 we have

|x− 2| < δ (1.41)
⇒ |x− 2| < ε/3 (1.42)
⇒ |3x− 6| < ε (1.43)

⇒ |(3x− 1)− 5| < ε (1.44)

as required to prove
lim
x→2

(3x− 1) = 5 (1.45)
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Example 1.5 - Limits of Piecewise Functions

Do the following limits exist?

(a)
lim
x→0

x

|x|
(1.46)

(b)

lim
x→π/2

| sin 2x|
sinx

(1.47)

(a) Since the function changes form either side of the limit, we must evaluate the left and right-sided
limits separately. The left sided limit is

lim
x→0−

x

|x|
= lim

x→0−

x

(−x)
= −1 (1.48)

The right-sided limit is
lim
x→0+

x

|x|
= lim

x→0−

x

x
= 1 (1.49)

Since these don’t match, the limit does not exist.

(b) Left-sided limit

lim
x→π/2−

| sin 2x|
sinx

= lim
x→π/2−

sin 2x

sinx
=

0

1
= 0 (1.50)

Right-sided limit

lim
x→π/2+

| sin 2x|
sinx

= lim
x→π/2+

− sin 2x

sinx
=

0

1
= 0 (1.51)

And so the limit does exist.†

†In fact, we can go further and say the function is continuous here since f(π/2) = 0 as well.
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2 Continuity

• Know definition of continuity

• Evaluate continuity at points in piecewise functions

• Know different types of discontinuity (removable, infinite, jump)

• Use the IVT to determine existence of roots

Example 2.1 - Evaluating continuity of piecewise funtions

Sketch the following functions and at each discontinuity, state whether f is (left / right) continuous and
the type of discontinuity.

(a)

f(x) =


−x2 + 1 x < 1

x 1 ≤ x ≤ 2
1

x−2 x > 2

(2.1)

(b)

g(x) =


x2 + 1 x < 0

0 x = 0

cos
(
x
4

)
x > 0

(2.2)

(a) Sketch:

-2 -1 1 2 3 4
x

-2

2

4

6
f(x)
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- Discontinuities occur at x = 1 and x = 2.

- Around x = 1

lim
x→1−

f(x) = 0, lim
x→1+

f(x) = 1, f(1) = 1 (2.3)

Therefore f is right-continuous at x = 1 and there is a jump discontinuity here.

- Around x = 2
lim
x→2−

f(x) = 2, lim
x→2+

f(x) =∞, f(2) = 2 (2.4)

Therefore f is left-continuous at x = 2 and there is an infinite discontinuity here.

(b) Sketch:

-1.0 -0.5 0.5 1.0 1.5 2.0
x

-1.0

-0.5

0.5

1.0

1.5

2.0

g(x)

- Around x = 0
lim
x→0−

g(x) = 1, lim
x→0+

g(x) = 1, g(0) = 0 (2.5)

Therefore g(x) is neither continuous from the right or the left at x = 0. The point x = 0 is a
removable singularity since the left and right limits are equal.
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Example 2.2 - The Intermediate Value Theorem

(a) Show that

f(x) =
x7

x5 + 1
(2.6)

takes on the value 0.32.

(b) Show that
ex + lnx = 0 (2.7)

has a solution.

(a) - Recall IVT: If a function f is continuous on the closed interval [a, b], then for any number M
that lies in between f(a) and f(b), there exists a c ∈ (a, b) such that f(c) =M .

- This function is continuous on the interval [0, 1].

- f(0) = 0, f(1) = 0.5

- Since 0.32 lies between f(0) and f(1), and f is continuous on this interval, there exists a c such
that f(c) = 0.32 by the IVT.

(b) - Let f(x) = ex + lnx. Note that f is continuous for x > 0.

- Pick some values...f(1) = e > 0

- f(1/100) = e1/100 − ln(100) < 0. (Just pick any value that makes f < 0.)

- Now by the IVT there exists a c ∈ [1/100, 1] such that f(c) = 0

- i.e there exists a solution to ex + lnx = 0.


