Examples 4:
 Limits and Continuity

October 10, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

1 Limits

- Solve limit problems using standard limit rules.
- Solve limit problems using the definition of a limit
- Practise applying the Squeeze Theorem
- Investigate existence of limits for piecewise functions

[^0]
Example 1.1-true / false statements

Warm up with the following true / false statements
(a) If f is continuous at a,

$$
\begin{equation*}
\lim _{x \rightarrow a} f(x)=f(a) \tag{1.1}
\end{equation*}
$$

(b) The limit

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0 \tag{1.2}
\end{equation*}
$$

for any $p \in \mathbb{R}$.
(c) The limit

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(\sin ^{2}(\sqrt{x})+\cos ^{2}(\sqrt{x})\right) \tag{1.3}
\end{equation*}
$$

does not exist.
(d) Suppose

$$
\begin{array}{ll}
& g(x), h(x) \rightarrow 5 \quad \text { as } \quad x \rightarrow \infty \\
\text { and } & g(x) \leq f(x) \leq h(x) \tag{1.5}
\end{array}
$$

Then

$$
\begin{equation*}
\lim _{x \rightarrow \infty} f(x)=5 \tag{1.6}
\end{equation*}
$$

(a) True. This is very useful, since it tells us that when evaluating the limit of a function at a point where it is continuous, we may just plug the value in. For example

$$
\begin{equation*}
\lim _{x \rightarrow 2} \frac{x^{2}+3}{x-1}=\frac{4+3}{2-1}=7 \tag{1.7}
\end{equation*}
$$

(b) False. This limit is only satisfied for $p>0$. Note that

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{p}}= \begin{cases}0 & p>0 \tag{1.8}\\ 1 & p=0 \\ \infty & p<0\end{cases}
$$

(c) False. Since

$$
\begin{equation*}
\sin ^{2}(f(x))+\cos ^{2}(f(x))=1 \tag{1.9}
\end{equation*}
$$

for any function $f(x)$. Any limit of a constant is just itself, so in this case the limit is 1 .
(d) True. This is an example of the Squeeze Theorem.

Example 1.2-Limits with an "indeterminate form"

Evaluate the following limits
(a)

$$
\begin{equation*}
\lim _{x \rightarrow 3} \frac{x^{2}-2 x-3}{x-3} \tag{1.10}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \sqrt{x^{2}+2 x}-x \tag{1.11}
\end{equation*}
$$

(a) Upon substituting 3 into the expression we see this limit has the indeterminate form " $0 / 0$ ". Rewriting the function, we have

$$
\begin{align*}
\frac{x^{2}-2 x-3}{x-3} & =\frac{(x-3)(x+1)}{x-3} \tag{1.12}\\
& =x+1 \quad \text { provided that } x \neq 3 \tag{1.13}
\end{align*}
$$

Note in taking the limit we get arbitrarily close to $x=3$ but never actually attain it, hence we may cancel the factors of $(x-3)$. Finally,

$$
\begin{equation*}
\lim _{x \rightarrow 3} x+1=4 \tag{1.14}
\end{equation*}
$$

(b) This has the indeterminate form " $\infty-\infty$ ". We get around this by converting the expression into a ratio:

$$
\begin{align*}
\sqrt{x^{2}+2 x}-x & =\frac{\left(\sqrt{x^{2}+2 x}-x\right)\left(\sqrt{x^{2}+2 x}+x\right)}{\sqrt{x^{2}+2 x}+x} \tag{1.15}\\
& =\frac{2 x}{\sqrt{x^{2}+2 x}+x} \quad \text { multiply out numerator } \tag{1.16}\\
& =\frac{2}{\sqrt{1+\frac{2}{x}}+1} \quad \text { divide by highest power } \tag{1.17}
\end{align*}
$$

Now the limit is fairly simple

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{2}{\sqrt{1+\frac{2}{x}}+1}=\frac{2}{\sqrt{1}+1}=1 \tag{1.18}
\end{equation*}
$$

Example 1.3-Application of the Squeeze Theorem

Evaluate the following limits
(a)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} e^{-0.1 x} \sin x \tag{1.19}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{1}{x}\right)} \tag{1.20}
\end{equation*}
$$

(a) We use the fact that $\sin x$ is bounded:

$$
\begin{align*}
-1 & \leq \sin x \leq 1 \tag{1.21}\\
\Rightarrow \quad-e^{-0.1 x} & \leq e^{-0.1 x} \sin x \leq e^{-0.1 x} \quad \text { since } e^{-0.1 x}>0 \tag{1.22}
\end{align*}
$$

Now

$$
\begin{equation*}
\lim _{x \rightarrow \infty}-e^{-0.1 x}=\lim _{x \rightarrow \infty} e^{-0.1 x}=0 \tag{1.23}
\end{equation*}
$$

and so by the Squeeze Theorem we must have

$$
\begin{equation*}
\lim _{x \rightarrow \infty} e^{-0.1 x} \sin x=0 \tag{1.24}
\end{equation*}
$$

(This represents an oscillation with exponentially decaying amplitude)

(b) Now use the fact that $\cos (1 / x)$ is bounded:

$$
\begin{align*}
-1 & \leq \cos (1 / x) \leq 1 \tag{1.25}\\
\Rightarrow \quad e^{-1} & \leq e^{\cos \left(\frac{1}{x}\right)} \leq e \quad \text { (since } e^{x} \text { is an increasing function we may do this) } \tag{1.26}\\
\Rightarrow \quad x^{2} e^{-1} & \leq x^{2} e^{\cos \left(\frac{1}{x}\right)} \leq x^{2} e \tag{1.27}
\end{align*}
$$

The outside limits are

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{2} e^{-1}=\lim _{x \rightarrow 0} x^{2} e=0 \tag{1.28}
\end{equation*}
$$

and so by the Squeeze Theorem,

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{2} e^{\cos \left(\frac{1}{x}\right)}=0 \tag{1.29}
\end{equation*}
$$

Example 1.4-Limits from first principles

Prove the following, using the definition of a limit
(a)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{2}-1}=1 \tag{1.30}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow 2}(3 x-1)=5 \tag{1.31}
\end{equation*}
$$

(a) We need to show that for any $\epsilon>0$, we can find an N such that

$$
\begin{equation*}
n>N \Rightarrow\left|\frac{n^{2}+1}{n^{2}-1}-1\right|<\epsilon \tag{1.32}
\end{equation*}
$$

Investigating the condition further we see that we require

$$
\begin{array}{r}
\left|\frac{n^{2}+1-\left(n^{2}-1\right)}{n^{2}-1}\right|<\epsilon \\
\Rightarrow\left|\frac{2}{n^{2}-1}\right|<\epsilon \tag{1.34}
\end{array}
$$

Since we are interested in the limit as $n \rightarrow \infty$ it is reasonable to assume that $n>1$. Thus we may drop the absolute value signs which gives

$$
\begin{align*}
& n^{2}-1>\frac{2}{\epsilon} \tag{1.35}\\
& \Rightarrow \quad n>\sqrt{1+\frac{2}{\epsilon}} \quad \text { taking the positive root since } n>1 \tag{1.36}
\end{align*}
$$

Now set $N=\sqrt{1+2 / \epsilon}$ meaning that for $n>N$ we have

$$
\begin{equation*}
\left|\frac{n^{2}+1}{n^{2}-1}-1\right|<\epsilon \tag{1.37}
\end{equation*}
$$

proving the assumed limit of 1 is correct.
(b) We must show that for any $\epsilon>0$ we can find a δ such that

$$
\begin{equation*}
|x-2|<\delta \quad \Rightarrow \quad|(3 x-1)-5|<\epsilon . \tag{1.38}
\end{equation*}
$$

Investigating the condition further, see that require

$$
\begin{align*}
& |3 x-6|<\epsilon \tag{1.39}\\
\Rightarrow & |x-2|<\epsilon / 3 \tag{1.40}
\end{align*}
$$

So if we set $\delta=\epsilon / 3$ we have

$$
\begin{align*}
|x-2| & <\delta \tag{1.41}\\
\Rightarrow|x-2| & <\epsilon / 3 \tag{1.42}\\
\Rightarrow|3 x-6| & <\epsilon \tag{1.43}\\
\Rightarrow|(3 x-1)-5| & <\epsilon \tag{1.44}
\end{align*}
$$

as required to prove

$$
\begin{equation*}
\lim _{x \rightarrow 2}(3 x-1)=5 \tag{1.45}
\end{equation*}
$$

Example 1.5-Limits of Piecewise Functions

Do the following limits exist?

(a)

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{x}{|x|} \tag{1.46}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow \pi / 2} \frac{|\sin 2 x|}{\sin x} \tag{1.47}
\end{equation*}
$$

(a) Since the function changes form either side of the limit, we must evaluate the left and right-sided limits separately. The left sided limit is

$$
\begin{equation*}
\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{(-x)}=-1 \tag{1.48}
\end{equation*}
$$

The right-sided limit is

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=\lim _{x \rightarrow 0^{-}} \frac{x}{x}=1 \tag{1.49}
\end{equation*}
$$

Since these don't match, the limit does not exist.
(b) Left-sided limit

$$
\begin{equation*}
\lim _{x \rightarrow \pi / 2^{-}} \frac{|\sin 2 x|}{\sin x}=\lim _{x \rightarrow \pi / 2^{-}} \frac{\sin 2 x}{\sin x}=\frac{0}{1}=0 \tag{1.50}
\end{equation*}
$$

Right-sided limit

$$
\begin{equation*}
\lim _{x \rightarrow \pi / 2^{+}} \frac{|\sin 2 x|}{\sin x}=\lim _{x \rightarrow \pi / 2^{+}} \frac{-\sin 2 x}{\sin x}=\frac{0}{1}=0 \tag{1.51}
\end{equation*}
$$

And so the limit does exist. ${ }^{\dagger}$

[^1]
2 Continuity

- Know definition of continuity
- Evaluate continuity at points in piecewise functions
- Know different types of discontinuity (removable, infinite, jump)
- Use the IVT to determine existence of roots

Example 2.1-Evaluating continuity of piecewise funtions

Sketch the following functions and at each discontinuity, state whether f is (left / right) continuous and the type of discontinuity.
(a)

$$
f(x)= \begin{cases}-x^{2}+1 & x<1 \tag{2.1}\\ x & 1 \leq x \leq 2 \\ \frac{1}{x-2} & x>2\end{cases}
$$

(b)

$$
g(x)= \begin{cases}x^{2}+1 & x<0 \tag{2.2}\\ 0 & x=0 \\ \cos \left(\frac{x}{4}\right) & x>0\end{cases}
$$

(a) Sketch:

- Discontinuities occur at $x=1$ and $x=2$.
- Around $x=1$

$$
\begin{equation*}
\lim _{x \rightarrow 1^{-}} f(x)=0, \quad \lim _{x \rightarrow 1^{+}} f(x)=1, \quad f(1)=1 \tag{2.3}
\end{equation*}
$$

Therefore f is right-continuous at $x=1$ and there is a jump discontinuity here.

- Around $x=2$

$$
\begin{equation*}
\lim _{x \rightarrow 2^{-}} f(x)=2, \quad \lim _{x \rightarrow 2^{+}} f(x)=\infty, \quad f(2)=2 \tag{2.4}
\end{equation*}
$$

Therefore f is left-continuous at $x=2$ and there is an infinite discontinuity here.
(b) Sketch:

- Around $x=0$

$$
\begin{equation*}
\lim _{x \rightarrow 0^{-}} g(x)=1, \quad \lim _{x \rightarrow 0^{+}} g(x)=1, \quad g(0)=0 \tag{2.5}
\end{equation*}
$$

Therefore $g(x)$ is neither continuous from the right or the left at $x=0$. The point $x=0$ is a removable singularity since the left and right limits are equal.

Example 2.2 - The Intermediate Value Theorem

(a) Show that

$$
\begin{equation*}
f(x)=\frac{x^{7}}{x^{5}+1} \tag{2.6}
\end{equation*}
$$

takes on the value 0.32 .
(b) Show that

$$
\begin{equation*}
e^{x}+\ln x=0 \tag{2.7}
\end{equation*}
$$

has a solution.
(a) - Recall IVT: If a function f is continuous on the closed interval $[a, b]$, then for any number M that lies in between $f(a)$ and $f(b)$, there exists a $c \in(a, b)$ such that $f(c)=M$.

- This function is continuous on the interval $[0,1]$.
- $f(0)=0, f(1)=0.5$
- Since 0.32 lies between $f(0)$ and $f(1)$, and f is continuous on this interval, there exists a c such that $f(c)=0.32$ by the IVT.
(b) - Let $f(x)=e^{x}+\ln x$. Note that f is continuous for $x>0$.
- Pick some values... $f(1)=e>0$
- $f(1 / 100)=e^{1 / 100}-\ln (100)<0$. (Just pick any value that makes $f<0$.)
- Now by the IVT there exists a $c \in[1 / 100,1]$ such that $f(c)=0$
- i.e there exists a solution to $e^{x}+\ln x=0$.

[^0]: * Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

[^1]: ${ }^{\dagger}$ In fact, we can go further and say the function is continuous here since $f(\pi / 2)=0$ as well.

