Examples 3:
 Trigonometric Functions, Hyperbolic Functions

October 3, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

1 Trigonometric Functions

- Learn / derive essential trig values
- Learn and apply compound-angle formulae
- Practise manipulating trig identities to solve problems
- Find amplitude and phase of superposition of waves (same freq.)

[^0]
Example 1.1

In drawing the appropriate right-angled triangles, find the exact values of
(a) $\sin \left(\frac{\pi}{3}\right)$
(b) $\cos \left(\frac{\pi}{4}\right)$
(a) Trig values of angles $\frac{\pi}{6}$ and $\frac{\pi}{3}$ may be found using one half of an equilateral triangle. From this we can read off

$$
\begin{equation*}
\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} \tag{1.1}
\end{equation*}
$$

1
(b) Trig values for $\frac{\pi}{4}$ may be found from a rightangled isosceles triangle. From this we see

$$
\begin{equation*}
\cos \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \tag{1.2}
\end{equation*}
$$

Example 1.2

Using the compound angle formulae, find the exact values of / expressions for
(a) $\cos \left(\frac{2 \pi}{3}\right)$
(b) $\sin \left(\frac{5 \pi}{12}\right)$
(c) $\cos \left(\frac{\pi}{2}-\theta\right)$
(d) $\sin (\theta+\pi)$
(a) By the cosine compound-angle formula (or double angle formula), we have

$$
\begin{align*}
\cos \left(\frac{2 \pi}{3}\right)=\cos \left(\frac{\pi}{3}+\frac{\pi}{3}\right) & =\cos \left(\frac{\pi}{3}\right) \cos \left(\frac{\pi}{3}\right)-\sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right) \tag{1.3}\\
& =(1 / 2)^{2}-(\sqrt{3} / 2)^{2} \tag{1.4}\\
& =-1 / 2 \tag{1.5}
\end{align*}
$$

(b) We may write

$$
\begin{align*}
\sin \left(\frac{5 \pi}{12}\right)=\sin \left(\frac{\pi}{4}+\frac{\pi}{6}\right) & =\sin \left(\frac{\pi}{4}\right) \cos \left(\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{4}\right) \sin \left(\frac{\pi}{6}\right) \tag{1.6}\\
& =(1 / \sqrt{2})(\sqrt{3} / 2)+(1 / \sqrt{2})(1 / 2) \tag{1.7}\\
& =\frac{\sqrt{3}+1}{2 \sqrt{2}} \tag{1.8}
\end{align*}
$$

(c) We have

$$
\begin{align*}
\cos \left(\frac{\pi}{2}-\theta\right) & =\cos \left(\frac{\pi}{2}\right) \cos \theta+\sin \left(\frac{\pi}{2}\right) \sin \theta \tag{1.9}\\
& =\sin \theta \tag{1.10}
\end{align*}
$$

As well, $\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$. These relations can be easily seen from a right-angled triangle.
(d) Finally,

$$
\begin{align*}
\sin (\theta+\pi) & =\sin \theta \cos \pi+\cos \theta \sin \pi \tag{1.11}\\
& =-\sin \theta \tag{1.12}
\end{align*}
$$

Example 1.3

Using right-angled triangles or trig identities, find an expression for

$$
\begin{equation*}
f(x)=\tan \left(\sin ^{-1}(x)\right) \quad x \in(-1,1) \tag{1.13}
\end{equation*}
$$

- Let $\theta=\sin ^{-1}(x)$. Then $\sin \theta=\sin \left(\sin ^{-1}(x)\right)=x$, which holds for all $x \in[-1,1]$
- We wish to find $\tan \theta$. We know $\sin \theta$ in terms of x. We may do either of the following:

1. Draw the relevant right-angled triangle with unit hypotenuse as below.

2. Use trigonometric identities to write $\tan \theta$ in terms of $\sin \theta$. We have

$$
\begin{equation*}
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sin \theta}{\sqrt{1-\sin ^{2} \theta}} \tag{1.15}
\end{equation*}
$$

Since $x=\sin \theta$, we get the result as before.

The missing side may be calculated using Pythagoras' Theorem, giving $\sqrt{1-x^{2}}$.
We can then read off $\tan \theta$ as

$$
\begin{equation*}
\tan \theta=\frac{x}{\sqrt{1-x^{2}}} \tag{1.14}
\end{equation*}
$$

- Either method yields

$$
\begin{equation*}
f(x)=\frac{x}{\sqrt{1-x^{2}}} \tag{1.16}
\end{equation*}
$$

Example 1.4

Find all values of $x \in[0,2 \pi)$ that satisfy

$$
\begin{equation*}
3 \sin x-\sin 3 x+\cos 2 x-1=0 \tag{1.17}
\end{equation*}
$$

- We need to reduce the trig terms to the same form. We will reduce to $\sin x$ since it's already in the equation.
- Start with $\sin 3 x$:

$$
\begin{align*}
\sin 3 x=\sin (2 x+x) & =\sin 2 x \cos x+\cos 2 x \sin x \tag{1.18}\\
& =(2 \sin x \cos x) \cos x+\left(1-2 \sin ^{2} x\right) \sin x \tag{1.19}\\
& =2 \sin x\left(1-\sin ^{2} x\right)+\left(1-2 \sin ^{2} x\right) \sin x \tag{1.20}\\
& =3 \sin x-4 \sin ^{3} x \tag{1.21}
\end{align*}
$$

- And we know

$$
\begin{equation*}
\cos 2 x=1-2 \sin ^{2} x \tag{1.22}
\end{equation*}
$$

- Then equation (1.17) may be written

$$
\begin{align*}
3 \sin x-\left(3 \sin x-4 \sin ^{3} x\right)+\left(1-2 \sin ^{2} x\right)-1 & =0 \tag{1.23}\\
\Rightarrow 4 \sin ^{3} x-2 \sin ^{2} x & =0 \tag{1.24}\\
\Rightarrow \sin ^{2} x(2 \sin x-1) & =0 \tag{1.25}
\end{align*}
$$

- Either $\sin x=0$ giving $x=0, \pi$.
- Or $\sin x=\frac{1}{2}$ giving $x=\frac{\pi}{6}, \frac{5 \pi}{6}$.
- Combining all possible solutions we have

$$
\begin{equation*}
x=0, \frac{\pi}{6}, \frac{5 \pi}{6}, \pi \tag{1.26}
\end{equation*}
$$

Example 1.5

Express the function

$$
\begin{equation*}
f(t)=3 \sin 2 t-4 \cos 2 t \tag{1.27}
\end{equation*}
$$

in the form $A \sin (\omega t+\phi)$.

- The frequency can be read off as $\omega=2$. Expanding out the required form, we have

$$
\begin{align*}
A \sin (2 t+\phi) & =A \sin 2 t \cos \phi+A \cos 2 t \sin \phi \tag{1.28}\\
& =(A \cos \phi) \sin 2 t+(A \sin \phi) \cos 2 t \tag{1.29}
\end{align*}
$$

- Comparing coefficients with $f(t)$ we require

$$
\begin{align*}
A \cos \phi & =3 \tag{1.30}\\
A \sin \phi & =-4 \tag{1.31}
\end{align*}
$$

- Summing the squares of these two expressions gives

$$
\begin{align*}
A^{2} \cos ^{2} \phi+A^{2} \sin ^{2} \phi & =3^{2}+(-4)^{2} \tag{1.32}\\
\Rightarrow A^{2}\left(\cos ^{2} \phi+\sin ^{2} \phi\right) & =25 \tag{1.33}\\
\Rightarrow A & =5 \tag{1.34}
\end{align*}
$$

By convention, we take the positive root since A represents the amplitude. Taking the negative root is also acceptable however, just note we would get a different phase ϕ to compensate.

- Dividing the expressions gives

$$
\begin{equation*}
\tan \phi=-\frac{4}{3} \tag{1.35}
\end{equation*}
$$

- Check which quadrant ϕ lies in. Since $A>0$ we must have $\cos \phi>0, \sin \phi<0$, putting ϕ in the fourth quadrant.
- Since $\tan ^{-1}\left(-\frac{4}{3}\right) \in\left[-\frac{\pi}{2}, 0\right]$ (can see this by drawing a quick graph of tan), this belongs to the fourth quadrant and so ${ }^{a}$

$$
\begin{equation*}
\phi=\tan ^{-1}\left(-\frac{4}{3}\right) \tag{1.36}
\end{equation*}
$$

- Putting this together gives

$$
\begin{equation*}
f(t)=5 \sin \left(2 t+\tan ^{-1}\left(-\frac{4}{3}\right)\right) \tag{1.37}
\end{equation*}
$$

[^1]

Example 1.6 - extra practice
Express the function

$$
\begin{equation*}
f(t)=-5 \sin \pi t+2 \cos \pi t \tag{1.38}
\end{equation*}
$$

in the form $A \sin (\omega t+\phi)$.

- Get

$$
\begin{align*}
& A \sin \phi=2 \tag{1.39}\\
& A \cos \phi=-5 \tag{1.40}
\end{align*}
$$

- Amplitude

$$
\begin{equation*}
A=\sqrt{2^{2}+5^{2}}=\sqrt{29} \tag{1.41}
\end{equation*}
$$

- Phase

$$
\begin{equation*}
\tan \phi=-\frac{2}{5} \tag{1.42}
\end{equation*}
$$

- ϕ lies in the second quadrant $(\sin >0, \cos <0)$
$-\tan ^{-1}(-2 / 5)$ lies in the fourth quadrant and so

$$
\begin{equation*}
\phi=\tan ^{-1}\left(-\frac{2}{5}\right)+\pi \tag{1.43}
\end{equation*}
$$

- Full solution

$$
\begin{equation*}
f(t)=\sqrt{29} \sin \left(\pi t+\tan ^{-1}\left(-\frac{2}{5}\right)+\pi\right) \tag{1.44}
\end{equation*}
$$

2 Hyperbolic Functions

- Obtain explicit forms for the inverse hyperbolic functions
- Practise deriving identities and manipulating expressions

Example 2.1

Find the inverse of $f(x)=\sinh x$

- Write $y=f(x)$ and then find x in terms of y :

$$
\begin{align*}
& y=\frac{e^{x}-e^{-x}}{2} \tag{2.1}\\
\Rightarrow & e^{x}-2 y-e^{-x}=0 \tag{2.2}\\
\Rightarrow & e^{2 x}-2 y e^{x}-1=0 \tag{2.3}\\
\Rightarrow & e^{x}=\frac{1}{2}\left(2 y+\sqrt{4 y^{2}+4}\right) \quad \text { positive root since } e^{x}>0 \tag{2.4}\\
\Rightarrow & e^{x}=y+\sqrt{y^{2}+1} \tag{2.5}\\
\Rightarrow & x=\ln \left(y+\sqrt{y^{2}+1}\right) \tag{2.6}
\end{align*}
$$

- We deduce that

$$
\begin{equation*}
\sinh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}+1}\right) \tag{2.7}
\end{equation*}
$$

Hence find the exact value of x that satisfies $\sinh x=1$ in terms of logarithms

$$
\begin{equation*}
\sinh x=2 \quad \Rightarrow \quad x=\sinh ^{-1}(2)=\ln (2+\sqrt{5}) \tag{2.8}
\end{equation*}
$$

Example 2.2

(a) Prove that $\sinh (2 x)=2 \sinh (x) \cosh (x)$
(b) Find all values of x that satisfy

$$
\begin{equation*}
\sinh (2 x)-3 \tanh (x)-\sinh (x)=0 \tag{2.9}
\end{equation*}
$$

(a) Starting with the r.h.s:

$$
\begin{align*}
2 \sinh x \cosh x & =2\left(\frac{1}{4}\left(e^{x}-e^{-x}\right)\left(e^{x}+e^{-x}\right)\right) \tag{2.10}\\
& =\frac{1}{2}\left(e^{2 x}-e^{-2 x}\right) \tag{2.11}\\
& =\sinh (2 x) \tag{2.12}
\end{align*}
$$

(b) We have

$$
\begin{align*}
\sinh (2 x)-3 \tanh x-\sinh x & =0 \tag{2.13}\\
\Rightarrow \quad 2 \sinh x \cosh x-\frac{3 \sinh x}{\cosh x}-\sinh x & =0 \tag{2.14}\\
\Rightarrow \quad 2 \sinh x \cosh ^{2}(x)-3 \sinh x-\sinh x \cosh x & =0 \quad \text { multiply through by } \cosh x \tag{2.15}\\
\Rightarrow \sinh x\left(2 \cosh ^{2}(x)-\cosh x-3\right) & =0 \tag{2.16}\\
\Rightarrow \sinh x(2 \cosh x-3)(\cosh x+1) & =0 \tag{2.17}
\end{align*}
$$

Possibilities are:
$-\sinh x=0$, i.e. $x=0$.

- $\cosh x=3 / 2$ i.e $x=\cosh ^{-1}(3 / 2)=\ln \left(\frac{1}{2}(3+\sqrt{5})\right)$ *

Note that $\cosh x=-1$ has no solutions since $\cosh x \geq 1$ for all x.

[^2]
[^0]: * Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

[^1]: ${ }^{a}$ if the quadrants do not match, add π to get the correct phase (\tan is π-periodic)

[^2]: ${ }^{*}$ using $\cosh ^{-1}(x)=\ln \left(x+\sqrt{x^{2}-1}\right)$

