Examples 2:
 Composite Functions, Piecewise Functions, Partial Fractions

September 26, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

1 Composite Functions

- Compute functional forms of composite functions
- Find their domains
- Even / Odd composites

Example 1.1

Consider the functions $f(x)=\frac{1}{x}, x \in(0, \infty)$ and $g(x)=2 x+1, x \in[-2,2]$.
(a) Determine $f(g(x))$ and its domain
(b) Determine $g(f(x))$ and its domain
(a) Functional form is

$$
\begin{equation*}
f(g(x))=f(2 x+1)=\frac{1}{2 x+1} \tag{1.1}
\end{equation*}
$$

To be in the domain of $f \circ g, x$ must be in the domain of g AND $g(x)$ must be in the domain of f. Thus

$$
\begin{equation*}
x \in[-2,2] \quad \text { and } \quad 2 x+1 \in(0, \infty) \tag{1.2}
\end{equation*}
$$

The second condition gives $x \in\left(-\frac{1}{2}, \infty\right)$. Intersected with the first condition, we find the domain of $f \circ g$ to be

$$
\begin{equation*}
x \in\left(-\frac{1}{2}, 2\right] \tag{1.3}
\end{equation*}
$$

[^0](b) Functional form is
\[

$$
\begin{equation*}
g(f(x))=g\left(\frac{1}{x}\right)=\frac{2}{x}+1 \tag{1.4}
\end{equation*}
$$

\]

- x must be in the domain of f i.e $x \in(0, \infty)$
- $f(x)$ must be in the domain of g i.e $\frac{1}{x} \in[-2,2]$. So

$$
\begin{align*}
& -2 & \leq \frac{1}{x} \leq 2 \tag{1.5}\\
\Rightarrow & \quad \frac{1}{x^{2}} & \leq 4 \tag{1.6}\\
\Rightarrow \quad & x^{2} & \geq \frac{1}{4} \tag{1.7}\\
\Rightarrow \quad & x & \geq \frac{1}{2} \quad \text { or } \quad x \leq-\frac{1}{2} \tag{1.8}
\end{align*}
$$

- Combining sets we get the domain for $g \circ f$ as

$$
\begin{equation*}
x \in\left[\frac{1}{2}, \infty\right) \tag{1.9}
\end{equation*}
$$

Example 1.2

Suppose $f(x)$ is an even function and $g(x)$ is odd.
(a) Is $f \circ g$ even, odd or neither?
(b) How about $g \circ f$?

Recall definitions and properties of even and odd functions to the class. We have

$$
\begin{equation*}
f(-x)=f(x) \quad \text { and } \quad g(-x)=-g(x) \tag{1.10}
\end{equation*}
$$

(a) $f \circ g$ is even since

$$
\begin{equation*}
f \circ g(-x)=f(g(-x))=f(-g(x))=f(g(x))=f \circ g(x) \tag{1.11}
\end{equation*}
$$

(b) $g \circ f$ is also even since

$$
\begin{equation*}
g \circ f(-x)=g(f(-x))=g(f(x))=g \circ f(x) \tag{1.12}
\end{equation*}
$$

2 Piecewise Functions

- Rewrite functions from piecewise notation to Heaviside notation and vice versa
- Calculate inverses of (invertible) piecewise functions

Example 2.1

Convert the following function to "piecewise form" and sketch.

$$
\begin{equation*}
f(x)=-\frac{1}{x}+H(x+1)\left[\frac{1}{x}-x\right]+H(x)[\ln (x+1)+x] \tag{2.1}
\end{equation*}
$$

- From the Heaviside arguments we see the function changes form at $x=-1$ and $x=0$.
- Show that

$$
f(x)= \begin{cases}-\frac{1}{x} & x<-1 \tag{2.2}\\ -x & -1 \leq x<0 \\ \ln (x+1) & x \geq 0\end{cases}
$$

Example 2.2

Write the following using Heaviside notation

$$
f(x)= \begin{cases}\cosh x & x<-1 \tag{2.3}\\ -x^{2}+3 & -1 \leq x<0 \\ 3 x^{2}+1 & 0 \leq x<1 \\ \sin x & x \geq 1\end{cases}
$$

- We note that the function changes form at $x=-1,0,1$. Therefore we require the Heaviside functions $H(x+1), H(x)$ and $H(x-1)$ respectively.
- Begin with $f(x)=\cosh x+\ldots$
- At $x=-1$ the function transforms. Get rid of $\cosh x$ and add $\left(-x^{2}+3\right)$.

$$
\begin{equation*}
f(x)=\cosh x+H(x+1)\left(-\cosh x-x^{2}+3\right)+\ldots \tag{2.4}
\end{equation*}
$$

- At $x=0$ get rid of $\left(-x^{2}+3\right)$ and add $3 x^{2}+1$:

$$
\begin{equation*}
f(x)=\cosh x+H(x+1)\left(-x^{2}+3-\cosh x\right)+H(x)\left(-\left(-x^{2}+3\right)+3 x^{2}+1\right)+\ldots \tag{2.5}
\end{equation*}
$$

- Finally, at $x=1$ get rid of $\left(3 x^{2}+1\right)$ and add $\sin x$:

$$
\begin{align*}
f(x) & =\cosh x+H(x+1)\left(-x^{2}+3-\cosh x\right)+H(x)\left(3 x^{2}+1-\left(-x^{2}+3\right)\right)+H(x-1)\left(-\left(3 x^{2}+1\right)+\sin x\right) \tag{2.6}\\
& \left.=\cosh x+H(x+1)\left(-x^{2}+3-\cosh x\right)+H(x)\left(4 x^{2}-2\right)\right)+H(x-1)\left(-3 x^{2}-1+\sin x\right) \tag{2.7}
\end{align*}
$$

Example 2.3-one for the students (they'll need waking up by now)
Express the following function using Heaviside notation

$$
f(x)= \begin{cases}e^{-x} & x<1 \tag{2.8}\\ \ln (2 x) & 1 \leq x<\sqrt{2} \\ \ln (\sqrt{x}) & x \geq \sqrt{2}\end{cases}
$$

Solution:

$$
\begin{equation*}
f(x)=e^{-x}+H(x-1)\left(\ln (2 x)-e^{-x}\right)+H(x-\sqrt{2}) \ln \left(\frac{1}{2 \sqrt{x}}\right) \tag{2.9}
\end{equation*}
$$

Example 2.4

Consider the following piecewise-defined function

$$
f(x)= \begin{cases}x / 3 & -2 \leq x \leq 0 \tag{2.10}\\ \ln (x+1) & 0 \leq x \leq 2\end{cases}
$$

(a) Sketch the function
(b) Find its inverse
(a) Plot

(b) Since f is one-to-one, we may invert it. Consider each piece separately:

- For $-2 \leq x \leq 0$ we have $-2 / 3 \leq y \leq 0$. Inverting gives $x=3 y$.
- For $0 \leq x<2$ we have $0 \leq y \leq \ln 3$. Inverting gives $x=e^{y}-1$.
- Put the two together...

$$
f^{-1}(y)= \begin{cases}3 y & -2 / 3 \leq y \leq 0 \tag{2.11}\\ e^{y}-1 & 0 \leq y \leq \ln 3\end{cases}
$$

3 Partial Fractions

- Express proper rational functions in terms of partial fractions
- Reduce improper rational functions to a polynomial and a proper rational function (long division)

Example 3.1 ${ }^{\dagger}$

Express the following proper rational functions as partial fractions.
(a)

$$
\begin{equation*}
\frac{x+23}{x^{2}+x-6} \tag{3.1}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\frac{5 x^{2}+3 x-5}{x^{3}+x^{2}-2 x-2} \tag{3.2}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\frac{1}{x(x-1)^{3}} \tag{3.3}
\end{equation*}
$$

(a)

$$
\begin{align*}
\frac{x+23}{x^{2}+x-6} & =\frac{x+23}{(x+3)(x-2)} \quad \text { factorize the denominator } \tag{3.4}\\
& =\frac{A}{x+3}+\frac{B}{x-2} \quad \text { partial fraction form for linear denominators } \tag{3.5}\\
& =\frac{A(x-2)+B(x-3)}{(x+3)(x-2)} \quad \text { put over a common denominator } \tag{3.6}
\end{align*}
$$

- Equate the numerators to get

$$
\begin{equation*}
A(x-2)+B(x+3)=x+23 \tag{3.7}
\end{equation*}
$$

- Now either: Group terms together and equate coefficients,

$$
\begin{equation*}
(A+B) x-2 A+3 B=x+23 \tag{3.8}
\end{equation*}
$$

to give simultaneous equations

$$
\begin{align*}
A+B & =1 \tag{3.9}\\
3 B-2 A & =23 \tag{3.10}
\end{align*}
$$

which solve to give $A=-4, B=5$.

[^1]- Or: Set values of x to simplify (3.7) (we may do this since this equation must hold for all x). Setting $x=2$ gives

$$
\begin{align*}
5 B & =25 \tag{3.11}\\
\Rightarrow \quad B & =5 . \tag{3.12}
\end{align*}
$$

Setting $x=-3$ gives

$$
\begin{align*}
-5 A & =20 \tag{3.13}\\
\Rightarrow \quad A & =-4 \tag{3.14}
\end{align*}
$$

- The decomposition is then

$$
\begin{equation*}
\frac{x+23}{x^{2}+x-6}=\frac{5}{x-2}-\frac{4}{x+3} \tag{3.15}
\end{equation*}
$$

(b) - We first need to factorize the denominator of

$$
\begin{equation*}
\frac{5 x^{2}+3 x-5}{x^{3}+x^{2}-2 x-2} \tag{3.16}
\end{equation*}
$$

- Since cubic, we guess a root using trial and error from the factors of -2 . Find $x=-1$ is a root, thus $(x+1)$ is a factor.
- Use long division to find the other factor:

$$
x+1) \begin{array}{rr}
x^{2} & -2 \tag{3.17}\\
x^{3}+x^{2}-2 x-2 \\
-x^{3}-x^{2} \\
\hline & \\
-2 x-2 \\
& 2 x+2 \\
\hline
\end{array}
$$

and so

$$
\begin{equation*}
x^{3}+x^{2}-2 x-2=(x+1)\left(x^{2}-2\right) \tag{3.18}
\end{equation*}
$$

- Since we have a linear and a quadratic term, the partial fraction decomposition takes the form

$$
\begin{equation*}
\frac{5 x^{2}+3 x-5}{(x+1)\left(x^{2}-2\right)}=\frac{A}{x+1}+\frac{B x+c}{x^{2}-2} \tag{3.19}
\end{equation*}
$$

- Make the common denominator and equate the numerators to give

$$
\begin{equation*}
A\left(x^{2}-2\right)+(B x+C)(x+1)=5 x^{2}+3 x-5 \tag{3.20}
\end{equation*}
$$

- Group terms:

$$
\begin{equation*}
(A+B) x^{2}+(B+C) x+C-2 A=5 x^{2}+3 x-5 \tag{3.21}
\end{equation*}
$$

- Solve the system of equations

$$
\begin{align*}
A+B & =5 \tag{3.22}\\
B+C & =3 \tag{3.23}\\
C-2 A & =-5 \tag{3.24}
\end{align*}
$$

to get $(A, B, C)=(3,2,1)$. Therefore

$$
\begin{equation*}
\frac{5 x^{2}+3 x-5}{x^{3}+x^{2}-2 x-2}=\frac{3}{x+1}+\frac{2 x+1}{x^{2}-2} \tag{3.25}
\end{equation*}
$$

Note: We could have used a combo of both methods here; setting $x=-1$ in (3.19) would have immediately given us $A=3$ and saved us a bit of work.
(c) - Here the denominator has a linear term and a cubic term with a 3-fold repeated root. This has decomposition

$$
\begin{equation*}
\frac{1}{x(x-1)^{3}}=\frac{A}{x}+\frac{B}{x-1}+\frac{C}{(x-1)^{2}}+\frac{D}{(x-1)^{3}} \tag{3.26}
\end{equation*}
$$

- Forming the common denominator and equating numerators gives

$$
\begin{equation*}
A(x-1)^{3}+B x(x-1)^{2}+C x(x-1)+D x=1 \tag{3.27}
\end{equation*}
$$

- Setting $x=1$ and $x=0$ separately immediately gives $D=1$ and $A=-1$.
- Grouping terms, we have

$$
\begin{equation*}
(A+B) x^{3}+(-3 A-2 B+C) x^{2}+(3 A+B-C+D) x-A=1 \tag{3.28}
\end{equation*}
$$

- The cubic component gives

$$
\begin{equation*}
A+B=0 \quad \Rightarrow \quad B=-A=1 \tag{3.29}
\end{equation*}
$$

- The quadratic component gives

$$
\begin{equation*}
-3 A-2 B+C=0 \quad \Rightarrow \quad C=3 A+2 B=-1 \tag{3.30}
\end{equation*}
$$

- Finally,

$$
\begin{equation*}
\frac{1}{x(x-1)^{3}}=-\frac{1}{x}+\frac{1}{x-1}-\frac{1}{(x-1)^{2}}+\frac{1}{(x-1)^{3}} \tag{3.31}
\end{equation*}
$$

Example 3.1

Decompose the following improper rational function into its partial fractions:

$$
\begin{equation*}
\frac{x^{4}+4 x^{3}-5 x^{2}-15 x+14}{x^{2}+2 x-8} \tag{3.32}
\end{equation*}
$$

- Since this rational function is improper we first need to break it down into a polynomial and a proper rational function. Using long division,

$$
\left.x^{2}+2 x-8\right) \begin{array}{r}
x^{2}+2 x-1 \tag{3.33}\\
\begin{array}{r}
x^{4}+4 x^{3}-5 x^{2}-15 x+14 \\
-x^{4}-2 x^{3}+8 x^{2} \\
2 x^{3}+3 x^{2}-15 x \\
-2 x^{3}-4 x^{2}+16 x \\
-x^{2}+x+14 \\
x^{2}+2 x-8 \\
3 x+6
\end{array}
\end{array}
$$

and so

$$
\begin{equation*}
\frac{x^{4}+4 x^{3}-5 x^{2}-15 x+14}{x^{2}+2 x-8}=x^{2}+2 x-1+\frac{3 x+6}{x^{2}+2 x-8} \tag{3.34}
\end{equation*}
$$

- The rational part may be written as

$$
\begin{equation*}
\frac{3 x+6}{(x+4)(x-2)}=\frac{A}{x+4}+\frac{B}{x-2} \tag{3.35}
\end{equation*}
$$

giving

$$
\begin{equation*}
A(x-2)+B(x+4)=3 x+6 \tag{3.36}
\end{equation*}
$$

- Setting $x=2$ gives $6 B=12 \Rightarrow B=2$.
- Setting $x=-4$ gives $-6 A=-6 \Rightarrow A=1$.
- Altogether

$$
\begin{equation*}
\frac{x^{4}+4 x^{3}-5 x^{2}-15 x+14}{x^{2}+2 x-8}=x^{2}+2 x-1+\frac{1}{x+4}+\frac{2}{x-2} \tag{3.37}
\end{equation*}
$$

[^0]: * Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

[^1]: ${ }^{\dagger}$ Note: this is very useful for integration

