Examples 1: Inequalities, Exponentials and Logarithms, Inverses

September 19, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

Inequalities 1

- Practice using set notation
- Know how to manipulate the 'absolute value' sign
- Use graphical interpretation

Example 1.1

Isolate x in the inequality |3x - 12| < 9.

$ 3x - 12 < 9 \tag{1.1}$

 $\Rightarrow -9 < 3x - 12 < 9$ (1.2)

3 < 3x < 21(1.3)

 \Rightarrow \Rightarrow 1 < x < 7(1.4)

Note 1: We could have divided (1.1) by 3 initially since $\frac{|x|}{a} = \left|\frac{x}{a}\right|$ for a > 0. (Slightly faster).

Note 2: 1 < x < 7 and $x \in (1, 7)$ are equivalent ways of expressing the interval.

^{*}Created by Thomas Bury - please send comments or corrections to thury@uwaterloo.ca

1 INEQUALITIES

Example 1.2

Describe the set $\{x : |x^2 - 2| > 1\}$ as a union of finite or infinite intervals.

We have either $x^2 - 2 > 1$ or $-(x^2 - 2) > 1$. The former gives

$$x^2 > 3 \tag{1.5}$$

$$\Rightarrow \quad x > \sqrt{3} \quad \text{or} \quad x < -\sqrt{3} \tag{1.6}$$

The latter gives

$$x^2 < 1 \tag{1.7}$$

$$\Rightarrow \quad -1 < x < 1 \tag{1.8}$$

Combining the results, we have

 $x \in (-\infty, -\sqrt{3}) \cup (-1, 1) \cup (\sqrt{3}, \infty)$ (1.9)

Note: Visualising the problem graphically is a good check / starter:

It is clear that the valid regions lie outside of the dashed lines, agreeing with our answer.

1 INEQUALITIES

Example 1.3

Find the set of values of x for which $ x - 2 - x + 1 < 0$

Standard approach: Test values of x in regions bordered by the critical values x = -1 and x = 2. Case 1: $x \ge 2$

$$x - 2 - (x + 1) < 0 \tag{1.10}$$

$$\Rightarrow \quad -3 < 0 \tag{1.11}$$

This holds for all x in the range $x \ge 2$.

Case 2: $-1 \le x < 2$

$$-(x-2) - (x+1) < 0 \tag{1.12}$$

$$\Rightarrow \quad -2x + 1 < 0 \tag{1.13}$$

$$\Rightarrow \quad x > \frac{1}{2} \tag{1.14}$$

and so the region $\frac{1}{2} < x < 2$ is valid.

Case 3: $x \leq -1$

$$-(x-2) + (x+1) < 0 \tag{1.15}$$

$$\Rightarrow \quad 3 < 0 \tag{1.16}$$

which is invalid for all x in this range.

Taking the union of all valid intervals we obtain

$$x \in (1/2, \infty) \tag{1.17}$$

Neat way (optional): Rearrange to

$$|x-2| < |x+1|. \tag{1.18}$$

Since both sides are positive, may take the squares and the inequality still holds. Thus

$$(x-2)^2 < (x+1)^2 \tag{1.19}$$

$$\Rightarrow -4x + 4 < 2x + 1 \tag{1.20}$$

$$\Rightarrow \quad x > \frac{1}{2} \tag{1.21}$$

1 INEQUALITIES

Visualise graphically:

For confirmation, we can see the curve y = |x - 2| lies under the curve y = |x + 1| for $x > \frac{1}{2}$.

2 EXPONENTIALS AND LOGARITHMS

2 Exponentials and Logarithms

- Practise manipulating exponents
- Familiarise with the laws of exponentials, logarithms and their inverse relation

Example 2.1

Solve the following for x :		
	$\sqrt{3^{2x^2+4}} = 27^{x+4}$	(2.1)

Using the laws of exponents, we may simplify the left and right-hand sides as

$$l.h.s = \sqrt{3^{2x^2+4}} = (3^{2x^2+4})^{1/2} = 3^{x^2+2}$$
(2.2)

$$r.h.s = 27^{x+4} = (3^3)^{x+4} = 3^{3x+12}$$
(2.3)

Note a^x is a one-to-one function, i.e. $a^{x_1} = a^{x_2} \Rightarrow x_1 = x_2$ for any a. Thus we may equate the exponents above to give

$$x^2 + 2 = 3x + 12 \tag{2.4}$$

$$\Rightarrow \quad x^2 - 3x - 10 = 0 \tag{2.5}$$

$$\Rightarrow (x-5)(x+2) = 0 \tag{2.6}$$

 $\Rightarrow \quad x = -2, \quad 5 \tag{2.7}$

Example 2.2

Given constants a, b such that $a + b \neq 0$, solve the following for x:	
$a\ln x + b\ln(2x) = 1$	(2.8)

Using logarithm rules,

$$a\ln x + b\ln(2x) = 1$$
 (2.9)

$$\Rightarrow \ln(x^a) + \ln((2x)^b) = 1 \tag{2.10}$$

$$\Rightarrow \qquad \ln(x^a(2x)^b) = 1 \tag{2.11}$$

$$\Rightarrow \qquad x^a x^b 2^b = e \tag{2.12}$$

$$\Rightarrow \qquad x^{a+b} = 2^{-b}e \tag{2.13}$$

$$\Rightarrow \qquad x = (2^{-b}e)^{\frac{1}{a+b}} \tag{2.14}$$

Note 1: For a + b = 0 equation (2.8) only holds for a single value of $b = (\ln 2)^{-1}$. Exercise for students?

3 INVERSES

3 Inverses

- Know how to compute the inverse of basic functions
- Be able to find the domain and range of the inverse function
- Understand that graphically, the inverse function as a reflection through the line y = x
- Know requirement for a function to be invertible (one-to-one)

Example 3.1

Find the inverse of the function	$f(x) = \frac{e^{2x} - 1}{e^{2x} + 1}$	(3.1)
with domain $x \in \mathbb{R}$.		

Standard approach is to set y = f(x) and find x in terms of y.

$$y = \frac{e^{2x} - 1}{e^{2x} + 1} \tag{3.2}$$

$$\Rightarrow (e^{2x} + 1)y = e^{2x} - 1$$

$$\Rightarrow e^{2x}y - e^{2x} = -y - 1$$

$$get x terms onto one side$$
(3.4)
$$(3.4)$$

$$(3.5)$$

$$\Rightarrow e^{2x}(y-1) = -y - 1 \tag{3.5}$$

$$\Rightarrow e^{2x} = \frac{1+y}{4} \tag{3.6}$$

$$\Rightarrow \qquad e^{2x} = \frac{-y}{1-y} \tag{3.6}$$

$$\Rightarrow \qquad x = \frac{1}{2} \ln\left(\frac{1+y}{1-y}\right) = f^{-1}(y) \tag{3.7}$$

It doesn't matter which label we choose to demonstrate the function's "rule". Convention is to use x so we may write

$$f^{-1}(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right)$$
(3.8)

Find the domain and range of $f^{-1}(x)$?

The range of f^{-1} is simply the domain of f which is given.

$$Domain(f) = Range(f^{-1}) = \mathbb{R}$$
(3.9)

The domain of f^{-1} is the range of f. We note that $f(x) = \tanh x$ and use the graph:

See

$$Range(f) = Domain(f^{-1}) = (-1, 1)$$
 (3.10)

A more rigorous approach to finding the range of f would be to show

$$\lim_{x \to -\infty} f(x) = -1, \quad \lim_{x \to \infty} f(x) = 1, \quad f'(x) = \frac{4e^{2x}}{(e^{2x} + 1)^2} > 0$$
(3.11)

Sketch $f^{-1}(x) = \tanh^{-1}(x)$

Simply a reflection in the line y = x:

Example 3.2

Consider the model for exponential growth of bacteria

$$P(t) = 10e^{2t} (3.12)$$

where P is number of bacterium at time $t \ge 0$ hours.

- 1. How many bacterium are there initially?
- 2. At what time does this initial population size double?
- 1. At time t = 0 there are P(0) = 10 bacterium.
- 2. To calculate a time for a given population size, we could find the inverse of (3.12):

$$t = \frac{1}{2} \ln \left(\frac{P}{10}\right) \tag{3.13}$$

Then P = 20 occurs at $t = \frac{1}{2} \ln 2$ hours.

Note 1: The function P(t) is one-to-one (exponential) and so we could invert it.

Note 2: We did not switch the labels for t and P after inverting since they have physical meanings! Note 3: Often, we don't bother find the inverse and just substitute a value for P into (3.12) and rearrange (essentially the same procedure).