# Examples 1: <br> Inequalities, Exponentials and Logarithms, Inverses 

September 19, 2016

The following are a set of examples to designed to complement a first-year calculus course. Learning objectives are listed under each section.*

## 1 Inequalities

- Practice using set notation
- Know how to manipulate the 'absolute value' sign
- Use graphical interpretation


## Example 1.1

Isolate $x$ in the inequality $|3 x-12|<9$.

$$
\begin{align*}
& & |3 x-12| & <9  \tag{1.1}\\
& \Rightarrow & -9<3 x-12 & <9  \tag{1.2}\\
\Rightarrow & & 3<3 x & <21  \tag{1.3}\\
\Rightarrow & & 1 & <x<7 \tag{1.4}
\end{align*}
$$

Note 1: We could have divided (1.1) by 3 initially since $\frac{|x|}{a}=\left|\frac{x}{a}\right|$ for $a>0$. (Slightly faster).

Note 2: $1<x<7$ and $x \in(1,7)$ are equivalent ways of expressing the interval.

[^0]
## Example 1.2

Describe the set $\left\{x:\left|x^{2}-2\right|>1\right\}$ as a union of finite or infinite intervals.

We have either $x^{2}-2>1$ or $-\left(x^{2}-2\right)>1$.
The former gives

$$
\begin{align*}
& x^{2}>3  \tag{1.5}\\
\Rightarrow \quad & x>\sqrt{3} \quad \text { or } \quad x<-\sqrt{3} \tag{1.6}
\end{align*}
$$

The latter gives

$$
\begin{align*}
& x^{2}<1  \tag{1.7}\\
\Rightarrow & -1 \tag{1.8}
\end{align*}
$$

Combining the results, we have

$$
\begin{equation*}
x \in(-\infty,-\sqrt{3}) \cup(-1,1) \cup(\sqrt{3}, \infty) \tag{1.9}
\end{equation*}
$$

Note: Visualising the problem graphically is a good check / starter:


It is clear that the valid regions lie outside of the dashed lines, agreeing with our answer.

## Example 1.3

Find the set of values of $x$ for which $|x-2|-|x+1|<0$
Standard approach: Test values of $x$ in regions bordered by the critical values $x=-1$ and $x=2$.
Case 1: $x \geq 2$

$$
\begin{align*}
x-2-(x+1) & <0  \tag{1.10}\\
\Rightarrow \quad-3 & <0 \tag{1.11}
\end{align*}
$$

This holds for all $x$ in the range $x \geq 2$.

Case 2: $-1 \leq x<2$

$$
\begin{align*}
-(x-2)-(x+1) & <0  \tag{1.12}\\
\Rightarrow \quad-2 x+1 & <0  \tag{1.13}\\
\Rightarrow \quad x & >\frac{1}{2} \tag{1.14}
\end{align*}
$$

and so the region $\frac{1}{2}<x<2$ is valid.

Case 3: $x \leq-1$

$$
\begin{align*}
-(x-2)+(x+1) & <0  \tag{1.15}\\
\Rightarrow \quad 3 & <0 \tag{1.16}
\end{align*}
$$

which is invalid for all $x$ in this range.

Taking the union of all valid intervals we obtain

$$
\begin{equation*}
x \in(1 / 2, \infty) \tag{1.17}
\end{equation*}
$$

Neat way (optional): Rearrange to

$$
\begin{equation*}
|x-2|<|x+1| . \tag{1.18}
\end{equation*}
$$

Since both sides are positive, may take the squares and the inequality still holds. Thus

$$
\begin{align*}
& (x-2)^{2}<(x+1)^{2}  \tag{1.19}\\
\Rightarrow \quad & -4 x+4<2 x+1  \tag{1.20}\\
\Rightarrow \quad & x>\frac{1}{2} \tag{1.21}
\end{align*}
$$

## Visualise graphically:



For confirmation, we can see the curve $y=|x-2|$ lies under the curve $y=|x+1|$ for $x>\frac{1}{2}$.

## 2 Exponentials and Logarithms

- Practise manipulating exponents
- Familiarise with the laws of exponentials, logarithms and their inverse relation


## Example 2.1

Solve the following for $x$ :

$$
\begin{equation*}
\sqrt{3^{2 x^{2}+4}}=27^{x+4} \tag{2.1}
\end{equation*}
$$

Using the laws of exponents, we may simplify the left and right-hand sides as

$$
\begin{align*}
& \text { l.h.s }=\sqrt{3^{2 x^{2}+4}}=\left(3^{2 x^{2}+4}\right)^{1 / 2}=3^{x^{2}+2}  \tag{2.2}\\
& \text { r.h.s }=27^{x+4}=\left(3^{3}\right)^{x+4}=3^{3 x+12} \tag{2.3}
\end{align*}
$$

Note $a^{x}$ is a one-to-one function, i.e. $a^{x_{1}}=a^{x_{2}} \Rightarrow x_{1}=x_{2}$ for any $a$. Thus we may equate the exponents above to give

$$
\begin{array}{rlrl} 
& & x^{2}+2=3 x+12 \\
\Rightarrow & x^{2}-3 x-10=0 \\
\Rightarrow \quad & (x-5)(x+2)=0 \\
\Rightarrow \quad & x=-2,5 \tag{2.7}
\end{array}
$$

## Example 2.2

Given constants $a, b$ such that $a+b \neq 0$, solve the following for $x$ :

$$
\begin{equation*}
a \ln x+b \ln (2 x)=1 \tag{2.8}
\end{equation*}
$$

Using logarithm rules,

$$
\begin{align*}
& & a \ln x+b \ln (2 x) & =1  \tag{2.9}\\
& \Rightarrow & \ln \left(x^{a}\right)+\ln \left((2 x)^{b}\right) & =1  \tag{2.10}\\
& \Rightarrow & & \ln \left(x^{a}(2 x)^{b}\right) \tag{2.11}
\end{align*}=1
$$

Note 1: For $a+b=0$ equation (2.8) only holds for a single value of $b\left(=(\ln 2)^{-1}\right)$. Exercise for students?

## 3 Inverses

- Know how to compute the inverse of basic functions
- Be able to find the domain and range of the inverse function
- Understand that graphically, the inverse function as a reflection through the line $y=x$
- Know requirement for a function to be invertible (one-to-one)


## Example 3.1

Find the inverse of the function

$$
\begin{equation*}
f(x)=\frac{e^{2 x}-1}{e^{2 x}+1} \tag{3.1}
\end{equation*}
$$

with domain $x \in \mathbb{R}$.
Standard approach is to set $y=f(x)$ and find $x$ in terms of $y$.

$$
\begin{array}{rlrl} 
& & y & =\frac{e^{2 x}-1}{e^{2 x}+1} \\
& & & \left(e^{2 x}+1\right) y \\
& =e^{2 x}-1 \\
\Rightarrow & e^{2 x} y-e^{2 x} & =-y-1 \\
\Rightarrow & & e^{2 x}(y-1) & =-y-1 \\
\Rightarrow & & e^{2 x} & =\frac{1+y}{1-y}  \tag{3.7}\\
\Rightarrow & & x & =\frac{1}{2} \ln \left(\frac{1+y}{1-y}\right)=f^{-1}(y)
\end{array} \quad \text { get } x \text { terms onto one side }
$$

It doesn't matter which label we choose to demonstrate the function's "rule". Convention is to use $x$ so we may write

$$
\begin{equation*}
f^{-1}(x)=\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \tag{3.8}
\end{equation*}
$$

Find the domain and range of $f^{-1}(x)$ ?

The range of $f^{-1}$ is simply the domain of $f$ which is given.

$$
\begin{equation*}
\operatorname{Domain}(f)=\operatorname{Range}\left(f^{-1}\right)=\mathbb{R} \tag{3.9}
\end{equation*}
$$

The domain of $f^{-1}$ is the range of $f$. We note that $f(x)=\tanh x$ and use the graph:


See

$$
\begin{equation*}
\operatorname{Range}(f)=\operatorname{Domain}\left(f^{-1}\right)=(-1,1) \tag{3.10}
\end{equation*}
$$

A more rigorous approach to finding the range of $f$ would be to show

$$
\begin{equation*}
\lim _{x \rightarrow-\infty} f(x)=-1, \quad \lim _{x \rightarrow \infty} f(x)=1, \quad f^{\prime}(x)=\frac{4 e^{2 x}}{\left(e^{2 x}+1\right)^{2}}>0 \tag{3.11}
\end{equation*}
$$

Sketch $f^{-1}(x)=\tanh ^{-1}(x)$
Simply a reflection in the line $y=x$ :


## Example 3.2

Consider the model for exponential growth of bacteria

$$
\begin{equation*}
P(t)=10 e^{2 t} \tag{3.12}
\end{equation*}
$$

where $P$ is number of bacterium at time $t \geq 0$ hours.

1. How many bacterium are there initially?
2. At what time does this initial population size double?
3. At time $t=0$ there are $P(0)=10$ bacterium.
4. To calculate a time for a given population size, we could find the inverse of (3.12):

$$
\begin{equation*}
t=\frac{1}{2} \ln \left(\frac{P}{10}\right) \tag{3.13}
\end{equation*}
$$

Then $P=20$ occurs at $t=\frac{1}{2} \ln 2$ hours.
Note 1: The function $P(t)$ is one-to-one (exponential) and so we could invert it.
Note 2: We did not switch the labels for $t$ and $P$ after inverting since they have physical meanings!
Note 3: Often, we don't bother find the inverse and just substitute a value for $P$ into (3.12) and rearrange (essentially the same procedure).


[^0]:    * Created by Thomas Bury - please send comments or corrections to tbury@uwaterloo.ca

