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1 Extinction
Deterministic modelling fails to capture the possibility of extinction, which is of significant impor-
tance to numerous areas of science. Under the more realistic, stochastic framework, we may investi-
gate probabilities of extinction and in turn take measures to avoid (e.g. an endangered species) or
promote (e.g. infectious disease) such an event.

Assignment 3 investigates the probability of extinction for a population governed by Malthus’ Law.
Below we show that extinction is inevitable for any non-adapting population i.e. birth and death
rates are only state (not time) dependent.

Let b(n) and d(n) represent the birth and death rate and ξ(n) = d(n)
b(n) be the relative death to birth

rate. We assume the following:

- b(0) = 0 : The ground state is absorbing (no immigration)

- d(n) > 0 : It is always possible to die

- ξ(n)→∞ as n→∞ : A limiting factor stops the population increasing without bound

Let pe(n) be the probability of extinction given n individuals. Then pe(0) = 1 and

pe(n) = P (birth next)pe(n+ 1) + P (death next)pe(n− 1) (1)

=
b(n)

b(n) + d(n)
pe(n+ 1) +

d(n)

b(n) + d(n)
pe(n− 1) (2)

from which we can show

pe(n+ 1)− pe(n) = ξ(n) [pe(n)− pe(n− 1)] (3)
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and using recurrence, we get

pe(n+ 1)− pe(n)︸ ︷︷ ︸
∈[−1,1]

=

n∏
k=1

ξ(k)︸ ︷︷ ︸
increases

without bound

[pe(1)− pe(0)]︸ ︷︷ ︸
so this =0

. (4)

Since pe(1) = pe(0) = 1, we have pe(n) = 1 ∀n , i.e eventual extinction is certain!
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2 Simulation of Birth-Death Processes
Consider a temporally homogeneous birth-death process with microscopic transition rates

ω(n+ 1|n) = b(n), ω(n− 1|n) = d(n). (5)

For simple systems involving linear birth/death rates, we may invoke the macroscopic rate equations
to pin down how the moments of the distribution evolve. However, for more complicated systems
typically involving non-linear terms, the macroscopic equations may not form a closed system, and
therefore we turn to simulation via a rigorously defined algorithm:

2.1 Gillespie’s Algorithm
Since its derivation in the classic text [1], Gillespie’s algorithm has been widely applied, with partic-
ular focus on chemical and biological systems. Upon each iteration, it relies upon the generation of
two random variables. One determines the time until the next event which we refer to as departure
time denoted τ . The other decides which event is to occur.

2.2 Distribution of Departure time
To randomly generate the departure time, we must know its probability distribution. We introduce
the probability q(n, t; τ) that the system in state n(t) will jump out of this state at an instant
between t and t+ τ . By temporal homogeneity, this is in fact independent of t, though may easily
be generalised to non-homogeneous processes [2]. Over an infinitesimal interval dτ we have

q(n; dτ) =
∑
n′

ω(n′|n)dτ = r(n)dτ (6)

where r(n) = b(n) + d(n) is the total microscopic rate of leaving the state n.

The probability that the system does not leave the state n in this infinitesimal interval is then

q∗(n; dτ) = 1− q(n; dτ).

Since the process is memoryless (i.e Markovian), we have

q∗(n; τ + dτ) = q∗(n; τ)q∗(n, dτ) (7)
= q∗(n; τ) (1− r(n)dτ) (8)

which gives the differential equation

dq∗

dτ
= −r(n)q∗(n, τ). (9)

This is easily solved to give
q∗(n; τ) = exp(−r(n)τ) (10)

noting that the probability of not having left in time zero, q∗(n; 0) = 1.

The probability that the system jumps out of state n(t) exactly after an elapsed time of τ is then

q∗(n, τ)︸ ︷︷ ︸
no jump in [0,τ)

× r(n)dτ︸ ︷︷ ︸
jump in [τ,τ+dτ ]

(11)
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giving a p.d.f of

fT (τ) = r(n)e−r(n)τ (12)

telling us that the departure time is exponentially distributed, i.e. T ∼ Exp(r(n))

In a simulation, this may be generated from a unit uniform random variable u1 ∈ U(0, 1) using the
inversion relation1

τ =
1

r(n)
ln

(
1

u1

)
. (13)

2.3 Event Selection
The probability of a particular event µ occurring given that some event has already happened is
proportional to its transition rate which we label ωµ. Normalising using the sum over all rates r(n)
we have

P (µ |an event happens) =
ωµ(n)

r(n)
(14)

So, in our simple case where only two events may occur (birth and death) we have

P (birth |an event happens) =
b(n)

r(n)
, P (death |an event happens) =

d(n)

r(n)
. (15)

An outcome is generated by splitting the unit interval into sections proportional to each rate and
selecting one based on where a unit random variable lands. Equivalently, we select event µ that is
the first integer for which

1

r(n)

µ∑
j=1

ωj(n) > u2. (16)

In the case of the BD process then, birth is chosen if

b(n)

r(n)
> u2, (17)

otherwise death is selected. The time and state of the system are then updated and the algorithm
continues until some termination criterion.

1Recall from probability theory that we may set the c.d.f (in this case FT (τ) = 1− e−rτ ) equal to a unit r.v. to
derive the inversion relation that generates random variables of that particular distribution.
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2.4 Pseudocode for Gillespie’s Algorithm
The algorithm may be summarised with the following pseudocode. It produces the stochastic time
series N(t) given the initial condition N(0) = n0.

Initialise: t = 0; n = n0

Generate τ : Draw u1 ∼ U [0, 1]

and take τ = 1
r(n) ln

(
1
u1

)

Pick event µ: Draw u2 ∼ U [0, 1]. If b(n)
d(n) > u2

then take µ = 1. Otherwise take µ = −1.

Advance the process: t = t + τ ; n = n + µ

Record for plotting:

N(t′) =

{
n− µ t− τ < t′ < t

n t = t′
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